Convergence of Bipartite Open Quantum Systems Stabilized by Reservoir Engineering

IF 1.4 3区 物理与天体物理 Q2 PHYSICS, MATHEMATICAL
Rémi Robin, Pierre Rouchon, Lev-Arcady Sellem
{"title":"Convergence of Bipartite Open Quantum Systems Stabilized by Reservoir Engineering","authors":"Rémi Robin,&nbsp;Pierre Rouchon,&nbsp;Lev-Arcady Sellem","doi":"10.1007/s00023-024-01481-8","DOIUrl":null,"url":null,"abstract":"<div><p>We study a generic family of Lindblad master equations modeling bipartite open quantum systems, where one tries to stabilize a quantum system by carefully designing its interaction with another, dissipative, quantum system—a strategy known as <i>quantum reservoir engineering</i>. We provide sufficient conditions for convergence of the considered Lindblad equations; our setting accommodates the case where steady-states are not unique but rather supported on a given subspace of the underlying Hilbert space. We apply our result to a Lindblad master equation modeling engineered multi-photon emission and absorption processes, a setting that received considerable attention in recent years due to its potential applications for the stabilization of so-called <i>cat qubits</i>.</p></div>","PeriodicalId":463,"journal":{"name":"Annales Henri Poincaré","volume":"26 5","pages":"1769 - 1819"},"PeriodicalIF":1.4000,"publicationDate":"2024-11-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annales Henri Poincaré","FirstCategoryId":"4","ListUrlMain":"https://link.springer.com/article/10.1007/s00023-024-01481-8","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, MATHEMATICAL","Score":null,"Total":0}
引用次数: 0

Abstract

We study a generic family of Lindblad master equations modeling bipartite open quantum systems, where one tries to stabilize a quantum system by carefully designing its interaction with another, dissipative, quantum system—a strategy known as quantum reservoir engineering. We provide sufficient conditions for convergence of the considered Lindblad equations; our setting accommodates the case where steady-states are not unique but rather supported on a given subspace of the underlying Hilbert space. We apply our result to a Lindblad master equation modeling engineered multi-photon emission and absorption processes, a setting that received considerable attention in recent years due to its potential applications for the stabilization of so-called cat qubits.

储层工程稳定的二部开放量子系统的收敛性
我们研究了一类模拟二部开放量子系统的Lindblad主方程,其中人们试图通过仔细设计量子系统与另一个耗散量子系统的相互作用来稳定量子系统,这种策略被称为量子水库工程。给出了所考虑的Lindblad方程收敛的充分条件;我们的设置适应了稳态不是唯一的情况,而是在底层希尔伯特空间的给定子空间上被支持的情况。我们将我们的结果应用于模拟工程多光子发射和吸收过程的Lindblad主方程,由于其在稳定所谓的cat量子比特方面的潜在应用,近年来该设置受到了相当大的关注。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Annales Henri Poincaré
Annales Henri Poincaré 物理-物理:粒子与场物理
CiteScore
3.00
自引率
6.70%
发文量
108
审稿时长
6-12 weeks
期刊介绍: The two journals Annales de l''Institut Henri Poincaré, physique théorique and Helvetica Physical Acta merged into a single new journal under the name Annales Henri Poincaré - A Journal of Theoretical and Mathematical Physics edited jointly by the Institut Henri Poincaré and by the Swiss Physical Society. The goal of the journal is to serve the international scientific community in theoretical and mathematical physics by collecting and publishing original research papers meeting the highest professional standards in the field. The emphasis will be on analytical theoretical and mathematical physics in a broad sense.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信