Gait and cost of transport analysis for quadruped robot with neuromorphic integrated circuit

IF 0.8 Q4 ROBOTICS
Jumpei Yamasaki, Shuxin Lyu, Katsuyuki Morishita, Ken Saito
{"title":"Gait and cost of transport analysis for quadruped robot with neuromorphic integrated circuit","authors":"Jumpei Yamasaki,&nbsp;Shuxin Lyu,&nbsp;Katsuyuki Morishita,&nbsp;Ken Saito","doi":"10.1007/s10015-024-00992-1","DOIUrl":null,"url":null,"abstract":"<div><p>Some researchers expect quadruped robots to be a labor force because of their ability to move stably over uneven terrain. However, their control requires a significant computational cost. Therefore, the authors have been studying neuromorphic circuits that mimic biological neurons with analog electronic circuits to implement the flexibility of biological control in robots. We have previously shown that the gait of a normal-type quadruped robot equipped with neuromorphic circuits changes depending on the mechanical structure of the robot. In this study, we conducted walking experiments on a normal-type quadruped robot and a camel-type quadruped robot implemented with neuromorphic integrated circuits. The results showed that the normal-type quadruped robot generated a trot gait, and the camel-type quadruped robot generated a trot and pace gait. Also, we analyzed how the movement costs of the two types of robots and the two gait types change depending on the movement speed. The analysis revealed the camel-type quadruped robot has a wider range of speeds at which it generates gait than the normal-type quadruped robot, but at the same speeds, the cost of transport of the camel-type quadruped robot is higher. Comparing the two gait types of the camel-type quadruped robot, the movement cost of the pace gait was slightly smaller at the same speed.</p></div>","PeriodicalId":46050,"journal":{"name":"Artificial Life and Robotics","volume":"30 2","pages":"227 - 235"},"PeriodicalIF":0.8000,"publicationDate":"2024-12-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Artificial Life and Robotics","FirstCategoryId":"1085","ListUrlMain":"https://link.springer.com/article/10.1007/s10015-024-00992-1","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ROBOTICS","Score":null,"Total":0}
引用次数: 0

Abstract

Some researchers expect quadruped robots to be a labor force because of their ability to move stably over uneven terrain. However, their control requires a significant computational cost. Therefore, the authors have been studying neuromorphic circuits that mimic biological neurons with analog electronic circuits to implement the flexibility of biological control in robots. We have previously shown that the gait of a normal-type quadruped robot equipped with neuromorphic circuits changes depending on the mechanical structure of the robot. In this study, we conducted walking experiments on a normal-type quadruped robot and a camel-type quadruped robot implemented with neuromorphic integrated circuits. The results showed that the normal-type quadruped robot generated a trot gait, and the camel-type quadruped robot generated a trot and pace gait. Also, we analyzed how the movement costs of the two types of robots and the two gait types change depending on the movement speed. The analysis revealed the camel-type quadruped robot has a wider range of speeds at which it generates gait than the normal-type quadruped robot, but at the same speeds, the cost of transport of the camel-type quadruped robot is higher. Comparing the two gait types of the camel-type quadruped robot, the movement cost of the pace gait was slightly smaller at the same speed.

基于神经形态集成电路的四足机器人步态与运输成本分析
一些研究人员希望四足机器人成为劳动力,因为它们有能力在不平坦的地形上稳定移动。然而,它们的控制需要大量的计算成本。因此,作者一直在研究用模拟电子电路模拟生物神经元的神经形态电路,以实现机器人生物控制的灵活性。我们之前已经证明,配备神经形态电路的普通四足机器人的步态会根据机器人的机械结构而变化。在这项研究中,我们对一个普通型四足机器人和一个装有神经形态集成电路的骆驼型四足机器人进行了行走实验。结果表明,普通型四足机器人产生小跑步态,骆驼型四足机器人产生小跑和步速步态。分析了两种机器人的运动成本和步态随运动速度的变化规律。分析表明,骆驼型四足机器人产生步态的速度范围比普通四足机器人大,但在相同的速度下,骆驼型四足机器人的运输成本更高。对比骆驼型四足机器人的两种步态类型,在相同速度下,步速步态的运动成本略小。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
2.00
自引率
22.20%
发文量
101
期刊介绍: Artificial Life and Robotics is an international journal publishing original technical papers and authoritative state-of-the-art reviews on the development of new technologies concerning artificial life and robotics, especially computer-based simulation and hardware for the twenty-first century. This journal covers a broad multidisciplinary field, including areas such as artificial brain research, artificial intelligence, artificial life, artificial living, artificial mind research, brain science, chaos, cognitive science, complexity, computer graphics, evolutionary computations, fuzzy control, genetic algorithms, innovative computations, intelligent control and modelling, micromachines, micro-robot world cup soccer tournament, mobile vehicles, neural networks, neurocomputers, neurocomputing technologies and applications, robotics, robus virtual engineering, and virtual reality. Hardware-oriented submissions are particularly welcome. Publishing body: International Symposium on Artificial Life and RoboticsEditor-in-Chiei: Hiroshi Tanaka Hatanaka R Apartment 101, Hatanaka 8-7A, Ooaza-Hatanaka, Oita city, Oita, Japan 870-0856 ©International Symposium on Artificial Life and Robotics
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信