Enhancing the rigidity of robot skin through the incorporation of plant growth

IF 0.8 Q4 ROBOTICS
Kodai Ochi, Mitsuharu Matsumoto
{"title":"Enhancing the rigidity of robot skin through the incorporation of plant growth","authors":"Kodai Ochi,&nbsp;Mitsuharu Matsumoto","doi":"10.1007/s10015-024-00999-8","DOIUrl":null,"url":null,"abstract":"<div><p>Robot skin plays a crucial role in shaping both the appearance and physical properties of robots. While various types of robot skins have been developed in recent years, their physical performance tends to degrade with use despite being optimal during manufacture. In contrast, plants and animals naturally adapt and change their physical properties as they grow. In this research, we explore a novel concept of robot skin by incorporating plants and leveraging their growth capabilities. We focused on the rapid growth of sprouts, cultivating them hydroponically on soft materials. Through experiments using a compression tester on composite samples of the grown sprouts and soft materials, we observed an increase in compressive stress due to plant growth. Our findings demonstrate that plant-symbiotic skin has the potential to enhance rigidity through specific plant growth. Furthermore, we examined the relationship between the number of plants and Young’s modulus, which was calculated by linearly approximating the compression curve, and discovered that plant roots significantly affect Young’s modulus, particularly in the later stages of compression.</p></div>","PeriodicalId":46050,"journal":{"name":"Artificial Life and Robotics","volume":"30 2","pages":"208 - 218"},"PeriodicalIF":0.8000,"publicationDate":"2024-12-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Artificial Life and Robotics","FirstCategoryId":"1085","ListUrlMain":"https://link.springer.com/article/10.1007/s10015-024-00999-8","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ROBOTICS","Score":null,"Total":0}
引用次数: 0

Abstract

Robot skin plays a crucial role in shaping both the appearance and physical properties of robots. While various types of robot skins have been developed in recent years, their physical performance tends to degrade with use despite being optimal during manufacture. In contrast, plants and animals naturally adapt and change their physical properties as they grow. In this research, we explore a novel concept of robot skin by incorporating plants and leveraging their growth capabilities. We focused on the rapid growth of sprouts, cultivating them hydroponically on soft materials. Through experiments using a compression tester on composite samples of the grown sprouts and soft materials, we observed an increase in compressive stress due to plant growth. Our findings demonstrate that plant-symbiotic skin has the potential to enhance rigidity through specific plant growth. Furthermore, we examined the relationship between the number of plants and Young’s modulus, which was calculated by linearly approximating the compression curve, and discovered that plant roots significantly affect Young’s modulus, particularly in the later stages of compression.

通过加入植物生长,增强机器人皮肤的刚性
机器人皮肤在塑造机器人的外观和物理性能方面起着至关重要的作用。虽然近年来开发了各种类型的机器人皮肤,但它们的物理性能在制造过程中是最佳的,但随着使用的增加,它们的性能往往会下降。相反,植物和动物在生长过程中自然地适应和改变它们的物理特性。在这项研究中,我们通过结合植物和利用它们的生长能力来探索机器人皮肤的新概念。我们专注于芽的快速生长,在软材料上水培它们。我们用压缩测试仪对生长芽和软质材料的复合样品进行实验,观察到由于植物生长,压缩应力增加。我们的研究结果表明,植物共生皮肤具有通过特定植物生长增强刚性的潜力。此外,我们研究了植物数量与杨氏模量之间的关系,通过线性逼近压缩曲线计算杨氏模量,发现植物根系显著影响杨氏模量,特别是在压缩后期。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
2.00
自引率
22.20%
发文量
101
期刊介绍: Artificial Life and Robotics is an international journal publishing original technical papers and authoritative state-of-the-art reviews on the development of new technologies concerning artificial life and robotics, especially computer-based simulation and hardware for the twenty-first century. This journal covers a broad multidisciplinary field, including areas such as artificial brain research, artificial intelligence, artificial life, artificial living, artificial mind research, brain science, chaos, cognitive science, complexity, computer graphics, evolutionary computations, fuzzy control, genetic algorithms, innovative computations, intelligent control and modelling, micromachines, micro-robot world cup soccer tournament, mobile vehicles, neural networks, neurocomputers, neurocomputing technologies and applications, robotics, robus virtual engineering, and virtual reality. Hardware-oriented submissions are particularly welcome. Publishing body: International Symposium on Artificial Life and RoboticsEditor-in-Chiei: Hiroshi Tanaka Hatanaka R Apartment 101, Hatanaka 8-7A, Ooaza-Hatanaka, Oita city, Oita, Japan 870-0856 ©International Symposium on Artificial Life and Robotics
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信