A conjecture on the composition of localizations on a stratified tensor triangulated category

IF 0.7 4区 数学 Q2 MATHEMATICS
Nicola Bellumat
{"title":"A conjecture on the composition of localizations on a stratified tensor triangulated category","authors":"Nicola Bellumat","doi":"10.1007/s40062-025-00367-8","DOIUrl":null,"url":null,"abstract":"<div><p>We study the composition of Bousfield localizations on a tensor triangulated category stratified via the Balmer-Favi support and with noetherian Balmer spectrum. Our aim is to provide reductions via purely axiomatic arguments, allowing us general applications to concrete categories examined in mathematical practice. We propose a conjecture which states that the behaviour of the composition of the localizations depends on the chains of inclusions of the Balmer primes indexing said localizations. We prove this conjecture in the case of finite or low dimensional Balmer spectra.</p></div>","PeriodicalId":49034,"journal":{"name":"Journal of Homotopy and Related Structures","volume":"20 2","pages":"251 - 285"},"PeriodicalIF":0.7000,"publicationDate":"2025-04-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s40062-025-00367-8.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Homotopy and Related Structures","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s40062-025-00367-8","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

We study the composition of Bousfield localizations on a tensor triangulated category stratified via the Balmer-Favi support and with noetherian Balmer spectrum. Our aim is to provide reductions via purely axiomatic arguments, allowing us general applications to concrete categories examined in mathematical practice. We propose a conjecture which states that the behaviour of the composition of the localizations depends on the chains of inclusions of the Balmer primes indexing said localizations. We prove this conjecture in the case of finite or low dimensional Balmer spectra.

关于分层张量三角化范畴上局部化组成的猜想
我们研究了在一个由Balmer- favi支持和noetherian Balmer谱分层的张量三角范畴上的Bousfield局部化的组成。我们的目的是通过纯粹的公理化论证提供约简,使我们能够在数学实践中对具体范畴进行一般应用。我们提出了一个猜想,该猜想表明,局部化的组成行为取决于巴尔默素数的包含链索引所述的局部化。我们在有限维或低维巴尔默谱的情况下证明了这个猜想。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.20
自引率
0.00%
发文量
21
审稿时长
>12 weeks
期刊介绍: Journal of Homotopy and Related Structures (JHRS) is a fully refereed international journal dealing with homotopy and related structures of mathematical and physical sciences. Journal of Homotopy and Related Structures is intended to publish papers on Homotopy in the broad sense and its related areas like Homological and homotopical algebra, K-theory, topology of manifolds, geometric and categorical structures, homology theories, topological groups and algebras, stable homotopy theory, group actions, algebraic varieties, category theory, cobordism theory, controlled topology, noncommutative geometry, motivic cohomology, differential topology, algebraic geometry.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信