{"title":"Detection of Malicious Clients in Federated Learning Using Graph Neural Network","authors":"Anee Sharma;Ningrinla Marchang","doi":"10.1109/ACCESS.2025.3565712","DOIUrl":null,"url":null,"abstract":"Federated Learning (FL) facilitates decentralized model training without the exchange of raw data, thereby guaranteeing privacy. However, due to its distributed nature, this paradigm is susceptible to adversarial threats such as sign-flipping attacks, in which malicious clients reverse model parameter signs in order to poison the global aggregation process. This study introduces a detection framework that is graph-based and leverages Graph Attention Networks (GATs) to overcome these challenges. The framework detects malicious clients with high accuracy by representing FL local models as directed graphs and capturing layer-wise statistical features. The efficacy of the approach is demonstrated by extensive experiments on the FEMNIST dataset, which simulate varying attacker percentages (15%, 35%) and attack probabilities (0.5, 0.7, 1.0). The GAT model obtains a 100% detection rate with zero false positives within an optimal threshold range of 0.5–0.9, as demonstrated by the results. Furthermore, isolating detected attackers during targeted rounds (20-60) substantially maintains FL global model performance, thereby mitigating the cascading effects of poisoned updates and ensuring system stability. This work offers a practicable, scalable, and robust solution to improve the security of FL systems against adversarial behaviors.","PeriodicalId":13079,"journal":{"name":"IEEE Access","volume":"13 ","pages":"77952-77972"},"PeriodicalIF":3.4000,"publicationDate":"2025-04-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10980311","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Access","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10980311/","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0
Abstract
Federated Learning (FL) facilitates decentralized model training without the exchange of raw data, thereby guaranteeing privacy. However, due to its distributed nature, this paradigm is susceptible to adversarial threats such as sign-flipping attacks, in which malicious clients reverse model parameter signs in order to poison the global aggregation process. This study introduces a detection framework that is graph-based and leverages Graph Attention Networks (GATs) to overcome these challenges. The framework detects malicious clients with high accuracy by representing FL local models as directed graphs and capturing layer-wise statistical features. The efficacy of the approach is demonstrated by extensive experiments on the FEMNIST dataset, which simulate varying attacker percentages (15%, 35%) and attack probabilities (0.5, 0.7, 1.0). The GAT model obtains a 100% detection rate with zero false positives within an optimal threshold range of 0.5–0.9, as demonstrated by the results. Furthermore, isolating detected attackers during targeted rounds (20-60) substantially maintains FL global model performance, thereby mitigating the cascading effects of poisoned updates and ensuring system stability. This work offers a practicable, scalable, and robust solution to improve the security of FL systems against adversarial behaviors.
IEEE AccessCOMPUTER SCIENCE, INFORMATION SYSTEMSENGIN-ENGINEERING, ELECTRICAL & ELECTRONIC
CiteScore
9.80
自引率
7.70%
发文量
6673
审稿时长
6 weeks
期刊介绍:
IEEE Access® is a multidisciplinary, open access (OA), applications-oriented, all-electronic archival journal that continuously presents the results of original research or development across all of IEEE''s fields of interest.
IEEE Access will publish articles that are of high interest to readers, original, technically correct, and clearly presented. Supported by author publication charges (APC), its hallmarks are a rapid peer review and publication process with open access to all readers. Unlike IEEE''s traditional Transactions or Journals, reviews are "binary", in that reviewers will either Accept or Reject an article in the form it is submitted in order to achieve rapid turnaround. Especially encouraged are submissions on:
Multidisciplinary topics, or applications-oriented articles and negative results that do not fit within the scope of IEEE''s traditional journals.
Practical articles discussing new experiments or measurement techniques, interesting solutions to engineering.
Development of new or improved fabrication or manufacturing techniques.
Reviews or survey articles of new or evolving fields oriented to assist others in understanding the new area.