Sangyeon Kim;Sanghyeok Boo;Gyewon Jeon;Dongmin Shin;Sangwon Lee
{"title":"Balancing Diversity in Session-Based Recommendation Between Relevance and Unexpectedness","authors":"Sangyeon Kim;Sanghyeok Boo;Gyewon Jeon;Dongmin Shin;Sangwon Lee","doi":"10.1109/ACCESS.2025.3565767","DOIUrl":null,"url":null,"abstract":"Recommender systems encounter the potential problem of filter bubble, neglecting the diversity of recommendations. These systems are inevitable to lower user experience because they cannot but provide tedious recommendations. Although several solutions have been introduced to increase diversity, it is still challenging to prevent accuracy loss with diversity enhancement. This study presents a new user-oriented algorithm for session-based recommendations that aims to improve diversity in consideration of two serendipity components—relevance and unexpectedness. Specifically, our approach first adopts serendipitous preference embedding into the recommender system based on session and graph neural networks. Next, we leverage a greedy algorithm of the maximum a posteriori (MAP) inference for the determinantal point process to re-rank items. Lastly, it additionally incorporates personalized trade-off balancing through a parameter that can be controlled by the user. To validate our approach, we conducted an experiment with two real-world datasets to demonstrate its ability to balance accuracy and diversity. The results showed that our approach generated not only relevant but unexpected recommendations, successfully improving diversity without accuracy loss. This study contributes to recommendation diversification methods, especially for session-based recommender systems under the user-centric perspective.","PeriodicalId":13079,"journal":{"name":"IEEE Access","volume":"13 ","pages":"77833-77846"},"PeriodicalIF":3.4000,"publicationDate":"2025-04-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10980295","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Access","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10980295/","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0
Abstract
Recommender systems encounter the potential problem of filter bubble, neglecting the diversity of recommendations. These systems are inevitable to lower user experience because they cannot but provide tedious recommendations. Although several solutions have been introduced to increase diversity, it is still challenging to prevent accuracy loss with diversity enhancement. This study presents a new user-oriented algorithm for session-based recommendations that aims to improve diversity in consideration of two serendipity components—relevance and unexpectedness. Specifically, our approach first adopts serendipitous preference embedding into the recommender system based on session and graph neural networks. Next, we leverage a greedy algorithm of the maximum a posteriori (MAP) inference for the determinantal point process to re-rank items. Lastly, it additionally incorporates personalized trade-off balancing through a parameter that can be controlled by the user. To validate our approach, we conducted an experiment with two real-world datasets to demonstrate its ability to balance accuracy and diversity. The results showed that our approach generated not only relevant but unexpected recommendations, successfully improving diversity without accuracy loss. This study contributes to recommendation diversification methods, especially for session-based recommender systems under the user-centric perspective.
IEEE AccessCOMPUTER SCIENCE, INFORMATION SYSTEMSENGIN-ENGINEERING, ELECTRICAL & ELECTRONIC
CiteScore
9.80
自引率
7.70%
发文量
6673
审稿时长
6 weeks
期刊介绍:
IEEE Access® is a multidisciplinary, open access (OA), applications-oriented, all-electronic archival journal that continuously presents the results of original research or development across all of IEEE''s fields of interest.
IEEE Access will publish articles that are of high interest to readers, original, technically correct, and clearly presented. Supported by author publication charges (APC), its hallmarks are a rapid peer review and publication process with open access to all readers. Unlike IEEE''s traditional Transactions or Journals, reviews are "binary", in that reviewers will either Accept or Reject an article in the form it is submitted in order to achieve rapid turnaround. Especially encouraged are submissions on:
Multidisciplinary topics, or applications-oriented articles and negative results that do not fit within the scope of IEEE''s traditional journals.
Practical articles discussing new experiments or measurement techniques, interesting solutions to engineering.
Development of new or improved fabrication or manufacturing techniques.
Reviews or survey articles of new or evolving fields oriented to assist others in understanding the new area.