Yin Liu , Yunpeng Zhai , Yi Zhang , Liming Song , Hanyue Zhang , Jiahui Cao , Senfeng Zhao , Yahui Wu , Ruopeng Liang , Rongtao Zhu , Weijie Wang , Yuling Sun
{"title":"High metastatic tumor-derived CXCL16 mediates liver colonization metastasis by inducing Kupffer cell polarization via the PI3K/AKT/FOXO3a pathway","authors":"Yin Liu , Yunpeng Zhai , Yi Zhang , Liming Song , Hanyue Zhang , Jiahui Cao , Senfeng Zhao , Yahui Wu , Ruopeng Liang , Rongtao Zhu , Weijie Wang , Yuling Sun","doi":"10.1016/j.neo.2025.101174","DOIUrl":null,"url":null,"abstract":"<div><div>Liver metastases represent a late-stage manifestation of numerous cancers, often associated with poor patient prognosis. Kupffer cells (KCs), resident liver macrophages, play a critical role in liver metastasis (LM). However, the mechanisms by which the polarization of KCs facilitate colorectal cancer (CRC) liver metastases remain elusive. Here, we established a CRC liver metastasis mouse model and employed a co-culture system, found that KCs were recruited and polarized to M2 phenotype. We isolated and purified highly metastatic cell lines to reveal potential changes in CRC cells during metastasis. Through bulk RNA sequencing, we identified and validated CXCL16 as a positive mediator in liver-metastatic CT26-LM cells that induced an M2-like KC phenotype. Knock down of CXCL16 reduced the M2 polarization of KCs and inhibited the formation of liver metastasis lesions. Next, this polarization process was shown to be achieved through the PI3K/AKT/FOXO3a pathway. Further investigation revealed FOXO3a transcriptionally activates CD206(MRC1) in this process. Pharmacological inhibition of the CXCL16-PI3K-FOXO3a axis to disrupt the polarization of KCs attenuated CRC liver metastasis in vivo. Our findings collectively indicate that targeting the CXCL16/PI3K/AKT/FOXO3a pathway in KCs may represent a promising therapeutic strategy for preventing CRC liver metastasis.</div></div>","PeriodicalId":18917,"journal":{"name":"Neoplasia","volume":"65 ","pages":"Article 101174"},"PeriodicalIF":4.8000,"publicationDate":"2025-05-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neoplasia","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1476558625000533","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Biochemistry, Genetics and Molecular Biology","Score":null,"Total":0}
引用次数: 0
Abstract
Liver metastases represent a late-stage manifestation of numerous cancers, often associated with poor patient prognosis. Kupffer cells (KCs), resident liver macrophages, play a critical role in liver metastasis (LM). However, the mechanisms by which the polarization of KCs facilitate colorectal cancer (CRC) liver metastases remain elusive. Here, we established a CRC liver metastasis mouse model and employed a co-culture system, found that KCs were recruited and polarized to M2 phenotype. We isolated and purified highly metastatic cell lines to reveal potential changes in CRC cells during metastasis. Through bulk RNA sequencing, we identified and validated CXCL16 as a positive mediator in liver-metastatic CT26-LM cells that induced an M2-like KC phenotype. Knock down of CXCL16 reduced the M2 polarization of KCs and inhibited the formation of liver metastasis lesions. Next, this polarization process was shown to be achieved through the PI3K/AKT/FOXO3a pathway. Further investigation revealed FOXO3a transcriptionally activates CD206(MRC1) in this process. Pharmacological inhibition of the CXCL16-PI3K-FOXO3a axis to disrupt the polarization of KCs attenuated CRC liver metastasis in vivo. Our findings collectively indicate that targeting the CXCL16/PI3K/AKT/FOXO3a pathway in KCs may represent a promising therapeutic strategy for preventing CRC liver metastasis.
期刊介绍:
Neoplasia publishes the results of novel investigations in all areas of oncology research. The title Neoplasia was chosen to convey the journal’s breadth, which encompasses the traditional disciplines of cancer research as well as emerging fields and interdisciplinary investigations. Neoplasia is interested in studies describing new molecular and genetic findings relating to the neoplastic phenotype and in laboratory and clinical studies demonstrating creative applications of advances in the basic sciences to risk assessment, prognostic indications, detection, diagnosis, and treatment. In addition to regular Research Reports, Neoplasia also publishes Reviews and Meeting Reports. Neoplasia is committed to ensuring a thorough, fair, and rapid review and publication schedule to further its mission of serving both the scientific and clinical communities by disseminating important data and ideas in cancer research.