{"title":"Activation of anoctamin-1 calcium-activated chloride channels reduces voluntary alcohol consumption in rats","authors":"Gleice Kelli Silva-Cardoso, Prosper N'Gouemo","doi":"10.1016/j.neuropharm.2025.110498","DOIUrl":null,"url":null,"abstract":"<div><div>Repeated episodes of binge drinking can lead to an alcohol use disorder, yet the underlying pharmacological mechanisms are still not fully understood. Nevertheless, emerging evidence indicates that Ca<sup>2+</sup>-dependent signaling effectively reduces alcohol consumption without affecting water intake. Therefore, activating anoctamin1 (ANO1), a Ca<sup>2+</sup>-activated chloride channel and a component of Ca<sup>2+</sup>-dependent signaling, can similarly decrease alcohol drinking while maintaining normal water intake. This study investigates how activation of ANO1 channels with EACT affects voluntary alcohol consumption in male and female Sprague-Dawley rats using the intermittent alcohol access method in a two-bottle choice paradigm. Rats were trained to drink 7.5 % ethanol or water for four weeks before administering either EACT (2.5, 5, and 10 mg/kg). Afterward, their alcohol intake, preference, and water intake were systematically recorded 2 and 24 h after exposure to water and 7.5 % ethanol solution. The results indicated that female rats consumed more alcohol than males. Furthermore, activating ANO1 channels with EACT significantly decreased alcohol intake and preference in males, only at the 5 mg/kg dose; in females, this effect was observed as a linear response at both the 5 and 10 mg/kg doses, highlighting distinct sex-related differences. Additionally, the inhibitory effect of EACT on alcohol consumption was associated with increased water intake in females, suggesting a potential influence of EACT on thirst homeostasis. Collectively, these findings highlight the differential effects of EACT on alcohol intake, preference, and water intake based on sex, and underscore the complexity of consummatory behavior mechanisms.</div></div>","PeriodicalId":19139,"journal":{"name":"Neuropharmacology","volume":"275 ","pages":"Article 110498"},"PeriodicalIF":4.6000,"publicationDate":"2025-05-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neuropharmacology","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0028390825002047","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Repeated episodes of binge drinking can lead to an alcohol use disorder, yet the underlying pharmacological mechanisms are still not fully understood. Nevertheless, emerging evidence indicates that Ca2+-dependent signaling effectively reduces alcohol consumption without affecting water intake. Therefore, activating anoctamin1 (ANO1), a Ca2+-activated chloride channel and a component of Ca2+-dependent signaling, can similarly decrease alcohol drinking while maintaining normal water intake. This study investigates how activation of ANO1 channels with EACT affects voluntary alcohol consumption in male and female Sprague-Dawley rats using the intermittent alcohol access method in a two-bottle choice paradigm. Rats were trained to drink 7.5 % ethanol or water for four weeks before administering either EACT (2.5, 5, and 10 mg/kg). Afterward, their alcohol intake, preference, and water intake were systematically recorded 2 and 24 h after exposure to water and 7.5 % ethanol solution. The results indicated that female rats consumed more alcohol than males. Furthermore, activating ANO1 channels with EACT significantly decreased alcohol intake and preference in males, only at the 5 mg/kg dose; in females, this effect was observed as a linear response at both the 5 and 10 mg/kg doses, highlighting distinct sex-related differences. Additionally, the inhibitory effect of EACT on alcohol consumption was associated with increased water intake in females, suggesting a potential influence of EACT on thirst homeostasis. Collectively, these findings highlight the differential effects of EACT on alcohol intake, preference, and water intake based on sex, and underscore the complexity of consummatory behavior mechanisms.
期刊介绍:
Neuropharmacology publishes high quality, original research and review articles within the discipline of neuroscience, especially articles with a neuropharmacological component. However, papers within any area of neuroscience will be considered. The journal does not usually accept clinical research, although preclinical neuropharmacological studies in humans may be considered. The journal only considers submissions in which the chemical structures and compositions of experimental agents are readily available in the literature or disclosed by the authors in the submitted manuscript. Only in exceptional circumstances will natural products be considered, and then only if the preparation is well defined by scientific means. Neuropharmacology publishes articles of any length (original research and reviews).