Fault-tolerant multi-agent formation control using distributed nonlinear MPC with discrete-time super-twisting sliding mode fault estimation

Farshid Aazam Manesh , Mahdi Pourgholi , Elham Amini Boroujeni , Farshad Aazam Manesh
{"title":"Fault-tolerant multi-agent formation control using distributed nonlinear MPC with discrete-time super-twisting sliding mode fault estimation","authors":"Farshid Aazam Manesh ,&nbsp;Mahdi Pourgholi ,&nbsp;Elham Amini Boroujeni ,&nbsp;Farshad Aazam Manesh","doi":"10.1016/j.fraope.2025.100269","DOIUrl":null,"url":null,"abstract":"<div><div>This paper presents a novel Fault-Tolerant Distributed Nonlinear Model Predictive Controller for Formation Control of Agents with Fractional-Order Dynamics (DNMPC-FCFO). The proposed approach enhances fault tolerance in multi-agent systems, particularly in environments with obstacles, by implementing a discrete-time fractional-order sliding mode fault estimation (DTFO-SMF) technique. Unlike conventional integer-order systems, this method leverages fractional-order dynamics to achieve more accurate fault estimation. A discrete-time sliding mode is employed for fault detection in distributed fractional-order systems, addressing the lingering effects of faults on system dynamics. By introducing a fractional-order sliding mode, our approach ensures precise fault estimation for each agent, accounting for disturbances indirectly during the estimation process. Building on previous research, we incorporate contractive constraints and a Lyapunov function into the optimization framework, ensuring system stability. The fractional-order system design is integral to developing a controller that prevents agent collisions and enables obstacle navigation, even under limited communication among mobile robots. In scenarios where an agent experiences a fault, adhering to predefined constraints becomes challenging. However, the proposed fault estimation mechanism supports the continued proper functionality of affected agents. Simulation results demonstrate the effectiveness of our approach in maintaining formation control and obstacle avoidance, highlighting its potential for practical applications.</div></div>","PeriodicalId":100554,"journal":{"name":"Franklin Open","volume":"11 ","pages":"Article 100269"},"PeriodicalIF":0.0000,"publicationDate":"2025-04-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Franklin Open","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2773186325000593","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This paper presents a novel Fault-Tolerant Distributed Nonlinear Model Predictive Controller for Formation Control of Agents with Fractional-Order Dynamics (DNMPC-FCFO). The proposed approach enhances fault tolerance in multi-agent systems, particularly in environments with obstacles, by implementing a discrete-time fractional-order sliding mode fault estimation (DTFO-SMF) technique. Unlike conventional integer-order systems, this method leverages fractional-order dynamics to achieve more accurate fault estimation. A discrete-time sliding mode is employed for fault detection in distributed fractional-order systems, addressing the lingering effects of faults on system dynamics. By introducing a fractional-order sliding mode, our approach ensures precise fault estimation for each agent, accounting for disturbances indirectly during the estimation process. Building on previous research, we incorporate contractive constraints and a Lyapunov function into the optimization framework, ensuring system stability. The fractional-order system design is integral to developing a controller that prevents agent collisions and enables obstacle navigation, even under limited communication among mobile robots. In scenarios where an agent experiences a fault, adhering to predefined constraints becomes challenging. However, the proposed fault estimation mechanism supports the continued proper functionality of affected agents. Simulation results demonstrate the effectiveness of our approach in maintaining formation control and obstacle avoidance, highlighting its potential for practical applications.
基于离散超扭滑模故障估计的分布式非线性MPC容错多智能体编队控制
提出了一种用于分数阶动态智能体编队控制的新型容错分布式非线性模型预测控制器(DNMPC-FCFO)。该方法通过实现离散时间分数阶滑模故障估计(DTFO-SMF)技术,提高了多智能体系统的容错性,特别是在有障碍物的环境中。与传统的整阶系统不同,该方法利用分数阶动力学来实现更准确的故障估计。采用离散时间滑模对分布式分数阶系统进行故障检测,解决了故障对系统动力学的影响。通过引入分数阶滑模,我们的方法确保了每个智能体的精确故障估计,并在估计过程中间接考虑了干扰。在先前研究的基础上,我们将收缩约束和Lyapunov函数纳入优化框架,以确保系统的稳定性。分数阶系统设计对于开发一种控制器是不可或缺的,即使在移动机器人之间有限的通信情况下,也可以防止代理碰撞并实现障碍物导航。在代理出现故障的场景中,遵守预定义的约束变得很有挑战性。然而,所提出的故障估计机制支持受影响代理的持续正常功能。仿真结果证明了该方法在保持编队控制和避障方面的有效性,突出了其在实际应用中的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信