Neuroimaging informatics framework for analyzing rare brain metastasis patterns in pleural mesothelioma using hybrid PET CT

Sumit Kumar Agrawal , Indra Prakash Dubey , Anoop Kumar Nair , Anurag Jain , Abhishek Mahato , Rajeev Kumar
{"title":"Neuroimaging informatics framework for analyzing rare brain metastasis patterns in pleural mesothelioma using hybrid PET CT","authors":"Sumit Kumar Agrawal ,&nbsp;Indra Prakash Dubey ,&nbsp;Anoop Kumar Nair ,&nbsp;Anurag Jain ,&nbsp;Abhishek Mahato ,&nbsp;Rajeev Kumar","doi":"10.1016/j.neuri.2025.100207","DOIUrl":null,"url":null,"abstract":"<div><div>A rare and hostile cancer mostly affecting the lungs, pleural mesothelioma has an exceedingly unusual but clinically relevant propagation to the brain. Their unusual appearance and low frequency make early diagnosis and accurate characterization of such uncommon brain metastases a diagnostic difficulty. The present research presents a neuroimaging informatics system using hybrid Positron Emission Tomography–Computed Tomography (PET-CT) imaging to examine and explain uncommon brain metastasis patterns in pleural mesothelioma patients. Our methodology combines sophisticated neuroinformatics technologies with AI-driven image processing algorithms to improve hybrid PET-CT scans' spatial and metabolic resolution. While a radiomics pipeline drives out quantitative characteristics like texture, intensity, and shape descriptors, a deep learning (DL)-based segmentation algorithm finds abnormal metabolic activity suggestive of metastatic lesions. Unsupervised clustering and anomaly detection resources help to examine these characteristics and find rare metastatic developments. To assist thorough case analysis, a clinical informatics layer links imaging results with patient demographics, histopathology data, and treatment history. Validated using retrospective PET-CT data from mesothelioma patients with verified brain involvement, the approach shows increased sensitivity and specificity in finding mysterious metastatic foci. This work emphasizes the need for hybrid imaging modalities in monitoring uncommon oncologic events and provides insightful analysis of the brain spread paths of pleural mesothelioma by providing a strong, AI-enhanced neuroimaging framework. The suggested method helps with early identification, and individualized treatment planning helps to clarify metastatic behavior in typical thoracic cancers.</div></div>","PeriodicalId":74295,"journal":{"name":"Neuroscience informatics","volume":"5 2","pages":"Article 100207"},"PeriodicalIF":0.0000,"publicationDate":"2025-05-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neuroscience informatics","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2772528625000226","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

A rare and hostile cancer mostly affecting the lungs, pleural mesothelioma has an exceedingly unusual but clinically relevant propagation to the brain. Their unusual appearance and low frequency make early diagnosis and accurate characterization of such uncommon brain metastases a diagnostic difficulty. The present research presents a neuroimaging informatics system using hybrid Positron Emission Tomography–Computed Tomography (PET-CT) imaging to examine and explain uncommon brain metastasis patterns in pleural mesothelioma patients. Our methodology combines sophisticated neuroinformatics technologies with AI-driven image processing algorithms to improve hybrid PET-CT scans' spatial and metabolic resolution. While a radiomics pipeline drives out quantitative characteristics like texture, intensity, and shape descriptors, a deep learning (DL)-based segmentation algorithm finds abnormal metabolic activity suggestive of metastatic lesions. Unsupervised clustering and anomaly detection resources help to examine these characteristics and find rare metastatic developments. To assist thorough case analysis, a clinical informatics layer links imaging results with patient demographics, histopathology data, and treatment history. Validated using retrospective PET-CT data from mesothelioma patients with verified brain involvement, the approach shows increased sensitivity and specificity in finding mysterious metastatic foci. This work emphasizes the need for hybrid imaging modalities in monitoring uncommon oncologic events and provides insightful analysis of the brain spread paths of pleural mesothelioma by providing a strong, AI-enhanced neuroimaging framework. The suggested method helps with early identification, and individualized treatment planning helps to clarify metastatic behavior in typical thoracic cancers.
应用混合PET CT分析胸膜间皮瘤罕见脑转移模式的神经影像信息学框架
胸膜间皮瘤是一种罕见的恶性肿瘤,主要影响肺部,它的扩散非常不寻常,但与临床相关。其不寻常的外观和低频率使得早期诊断和准确描述这种罕见的脑转移成为诊断困难。本研究提出了一种神经影像信息学系统,使用正电子发射断层扫描-计算机断层扫描(PET-CT)混合成像来检查和解释胸膜间皮瘤患者罕见的脑转移模式。我们的方法将复杂的神经信息学技术与人工智能驱动的图像处理算法相结合,以提高混合PET-CT扫描的空间和代谢分辨率。放射组学流水线可以提取定量特征,如纹理、强度和形状描述符,而基于深度学习(DL)的分割算法可以发现提示转移性病变的异常代谢活动。无监督聚类和异常检测资源有助于检查这些特征并发现罕见的转移性发展。为了帮助彻底的病例分析,临床信息学层将成像结果与患者人口统计学,组织病理学数据和治疗史联系起来。该方法在发现神秘的转移灶方面显示出更高的敏感性和特异性,通过对证实有脑部累及的间皮瘤患者的回顾性PET-CT数据进行验证。这项工作强调了混合成像模式在监测罕见肿瘤事件中的必要性,并通过提供强大的人工智能增强神经成像框架,对胸膜间皮瘤的脑扩散路径提供了深刻的分析。建议的方法有助于早期识别,个性化的治疗计划有助于澄清典型胸部癌症的转移行为。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Neuroscience informatics
Neuroscience informatics Surgery, Radiology and Imaging, Information Systems, Neurology, Artificial Intelligence, Computer Science Applications, Signal Processing, Critical Care and Intensive Care Medicine, Health Informatics, Clinical Neurology, Pathology and Medical Technology
自引率
0.00%
发文量
0
审稿时长
57 days
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信