Sachin Gupta , Mustafa Mudhafar , Yogini Dilip Borole , V. Mahalakshmi , Janjhyam Venkata Naga Ramesh , Muhammad Attique Khan
{"title":"Optimizing transcranial focused ultrasound parameters: A methodological advancement in non-invasive brain stimulation for next-gen clinical applications","authors":"Sachin Gupta , Mustafa Mudhafar , Yogini Dilip Borole , V. Mahalakshmi , Janjhyam Venkata Naga Ramesh , Muhammad Attique Khan","doi":"10.1016/j.neuri.2025.100204","DOIUrl":null,"url":null,"abstract":"<div><div><strong>Background:</strong> Transcranial-focused ultrasound (FUS), a non-invasive neuromodulation method, is gaining popularity for treating neurological and psychiatric disorders. However, changing stimulation settings for precise brain targeting remains challenging.</div><div><strong>Methods:</strong> Existing techniques have spatial resolution, skull acoustic transmission, and parameter selection issues that reduce clinical efficacy. These problems reduce tFUS application repeatability and safety. To address these challenges, this research proposes a novel computational-experimental strategy that combines advanced computational modeling (IACM) with in vivo validation. The proposed design uses subject-specific skull acoustic simulations, Deep Learning (DL)-based parameter optimization, and real-time feedback to increase stimulation accuracy and efficacy.</div><div><strong>Results</strong>: The recommended approach allows customized transcutaneous electrical nerve stimulation (tFUS) by modifying frequency, intensity, and targeting. Neuromodulation becomes better while staying safe. It should be adaptable enough for research and clinical usage to create neurostimulation precision medicine.</div><div><strong>Comparative analysis:</strong> The study shows that the proposed framework improves spatial precision, skull transmission effect variability, and neuromodulation efficacy compared to existing methods.</div><div><strong>Conclusion:</strong> This approach enables the development next-generation non-invasive brain stimulation devices with more therapeutic uses. Non-invasive brain stimulation (NIBS) technologies, including tFUS, TMS, and tDCS, may now accurately affect neurological and psychiatric diseases. However, these approaches are susceptible to inter-subject variability, poor targeting, and skull deformities. Artificial intelligence-driven real-time optimization frameworks like the Integrating Advanced Computational Modeling (IACM) framework are needed to overcome these constraints.</div></div>","PeriodicalId":74295,"journal":{"name":"Neuroscience informatics","volume":"5 2","pages":"Article 100204"},"PeriodicalIF":0.0000,"publicationDate":"2025-05-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neuroscience informatics","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2772528625000196","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Background: Transcranial-focused ultrasound (FUS), a non-invasive neuromodulation method, is gaining popularity for treating neurological and psychiatric disorders. However, changing stimulation settings for precise brain targeting remains challenging.
Methods: Existing techniques have spatial resolution, skull acoustic transmission, and parameter selection issues that reduce clinical efficacy. These problems reduce tFUS application repeatability and safety. To address these challenges, this research proposes a novel computational-experimental strategy that combines advanced computational modeling (IACM) with in vivo validation. The proposed design uses subject-specific skull acoustic simulations, Deep Learning (DL)-based parameter optimization, and real-time feedback to increase stimulation accuracy and efficacy.
Results: The recommended approach allows customized transcutaneous electrical nerve stimulation (tFUS) by modifying frequency, intensity, and targeting. Neuromodulation becomes better while staying safe. It should be adaptable enough for research and clinical usage to create neurostimulation precision medicine.
Comparative analysis: The study shows that the proposed framework improves spatial precision, skull transmission effect variability, and neuromodulation efficacy compared to existing methods.
Conclusion: This approach enables the development next-generation non-invasive brain stimulation devices with more therapeutic uses. Non-invasive brain stimulation (NIBS) technologies, including tFUS, TMS, and tDCS, may now accurately affect neurological and psychiatric diseases. However, these approaches are susceptible to inter-subject variability, poor targeting, and skull deformities. Artificial intelligence-driven real-time optimization frameworks like the Integrating Advanced Computational Modeling (IACM) framework are needed to overcome these constraints.
Neuroscience informaticsSurgery, Radiology and Imaging, Information Systems, Neurology, Artificial Intelligence, Computer Science Applications, Signal Processing, Critical Care and Intensive Care Medicine, Health Informatics, Clinical Neurology, Pathology and Medical Technology