Colored sl(N) homology and SU(N) representations

IF 1.5 1区 数学 Q1 MATHEMATICS
Joshua Wang
{"title":"Colored sl(N) homology and SU(N) representations","authors":"Joshua Wang","doi":"10.1016/j.aim.2025.110314","DOIUrl":null,"url":null,"abstract":"<div><div>We provide the first complete computations of colored <span><math><mrow><mi>sl</mi></mrow><mo>(</mo><mi>N</mi><mo>)</mo></math></span> homology for a nontrivial knot. In doing so, we show that the colored <span><math><mrow><mi>sl</mi></mrow><mo>(</mo><mi>N</mi><mo>)</mo></math></span> homology of the trefoil labeled by an exterior power of the defining representation is isomorphic to the cohomology of a closed manifold naturally associated to the trefoil. This manifold is the set of homomorphisms from the fundamental group of the complement of the trefoil to <span><math><mi>SU</mi><mo>(</mo><mi>N</mi><mo>)</mo></math></span> that send meridians to a particular conjugacy class depending on the label. We also provide complete computations and analogous isomorphisms for the first nontrivial link, the Hopf link.</div></div>","PeriodicalId":50860,"journal":{"name":"Advances in Mathematics","volume":"474 ","pages":"Article 110314"},"PeriodicalIF":1.5000,"publicationDate":"2025-05-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Mathematics","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0001870825002129","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

We provide the first complete computations of colored sl(N) homology for a nontrivial knot. In doing so, we show that the colored sl(N) homology of the trefoil labeled by an exterior power of the defining representation is isomorphic to the cohomology of a closed manifold naturally associated to the trefoil. This manifold is the set of homomorphisms from the fundamental group of the complement of the trefoil to SU(N) that send meridians to a particular conjugacy class depending on the label. We also provide complete computations and analogous isomorphisms for the first nontrivial link, the Hopf link.
彩色sl(N)同调和SU(N)表示
本文首次给出了非平凡结的彩色sl(N)同调的完整计算。在此过程中,我们证明了由定义表示的外幂标记的三叶草的彩色sl(N)同构于与三叶草自然相关的封闭流形的上同构。这个流形是从三叶补的基本群到SU(N)的同态集合,这些同态根据标记将子午线发送到特定的共轭类。我们还提供了第一个非平凡链路Hopf链路的完备计算和类似同构。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Advances in Mathematics
Advances in Mathematics 数学-数学
CiteScore
2.80
自引率
5.90%
发文量
497
审稿时长
7.5 months
期刊介绍: Emphasizing contributions that represent significant advances in all areas of pure mathematics, Advances in Mathematics provides research mathematicians with an effective medium for communicating important recent developments in their areas of specialization to colleagues and to scientists in related disciplines.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信