From Crowds to Coordinates: A user density-distance dynamic transformation method for Telegram users geolocalization

IF 4.4 2区 计算机科学 Q1 COMPUTER SCIENCE, HARDWARE & ARCHITECTURE
Yiyang Shi , Xiangyang Luo , Wenqi Shi
{"title":"From Crowds to Coordinates: A user density-distance dynamic transformation method for Telegram users geolocalization","authors":"Yiyang Shi ,&nbsp;Xiangyang Luo ,&nbsp;Wenqi Shi","doi":"10.1016/j.comnet.2025.111316","DOIUrl":null,"url":null,"abstract":"<div><div>Telegram is a widely used instant messaging service with over 900 million monthly active users. Research on the geolocalization of Telegram users helps verify the platform’s privacy protection and aids in cybercrime investigations. Existing location methods struggle with Telegram’s characteristics, such as large granularity changes in reported distances and irregular user turnover, making direct geolocalization challenging. This paper presents a new geolocalization method for Telegram users based on user density-distance dynamic transformation (U3DT). Unlike traditional methods, U3DT integrates distance breaks caused by reported distance changes and varying user densities to assess actual user distance, dynamically deploying probes for precise positioning. By analyzing changes in reported distances and user densities, we establish a relationship between discontinuity points and user densities. The geolocalization process determines the target’s real distance using dynamically set probes and corresponding user densities. Finally, we address the selection of datum points in trilateration based on discontinuity points. Experimental results on the Telegram platform show that U3DT achieves high geolocalization accuracy, with an average deviation of 223 meters and a maximum error of 450 meters. Compared to existing methods like RRABG, ETBG, and HNBG, U3DT reduces the average error by 60.4 % to 71.2 %.</div></div>","PeriodicalId":50637,"journal":{"name":"Computer Networks","volume":"266 ","pages":"Article 111316"},"PeriodicalIF":4.4000,"publicationDate":"2025-04-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computer Networks","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S138912862500283X","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE","Score":null,"Total":0}
引用次数: 0

Abstract

Telegram is a widely used instant messaging service with over 900 million monthly active users. Research on the geolocalization of Telegram users helps verify the platform’s privacy protection and aids in cybercrime investigations. Existing location methods struggle with Telegram’s characteristics, such as large granularity changes in reported distances and irregular user turnover, making direct geolocalization challenging. This paper presents a new geolocalization method for Telegram users based on user density-distance dynamic transformation (U3DT). Unlike traditional methods, U3DT integrates distance breaks caused by reported distance changes and varying user densities to assess actual user distance, dynamically deploying probes for precise positioning. By analyzing changes in reported distances and user densities, we establish a relationship between discontinuity points and user densities. The geolocalization process determines the target’s real distance using dynamically set probes and corresponding user densities. Finally, we address the selection of datum points in trilateration based on discontinuity points. Experimental results on the Telegram platform show that U3DT achieves high geolocalization accuracy, with an average deviation of 223 meters and a maximum error of 450 meters. Compared to existing methods like RRABG, ETBG, and HNBG, U3DT reduces the average error by 60.4 % to 71.2 %.
从人群到坐标:Telegram用户地理定位的用户密度-距离动态变换方法
Telegram是一个广泛使用的即时通讯服务,每月活跃用户超过9亿。对Telegram用户的地理定位研究有助于验证该平台的隐私保护,并有助于网络犯罪调查。现有的定位方法难以适应Telegram的特点,比如报告距离的大粒度变化和不规则的用户流失率,这使得直接的地理定位具有挑战性。提出了一种基于用户密度-距离动态变换(U3DT)的Telegram用户地理定位新方法。与传统方法不同,U3DT集成了由报告的距离变化和不同的用户密度引起的距离中断,以评估实际用户距离,动态部署探针以进行精确定位。通过分析报告距离和用户密度的变化,我们建立了不连续点和用户密度之间的关系。地理定位过程使用动态设置的探针和相应的用户密度来确定目标的实际距离。最后,讨论了基于不连续点的三边测量中基准点的选择问题。Telegram平台上的实验结果表明,U3DT实现了较高的地理定位精度,平均偏差为223米,最大误差为450米。与现有的RRABG、ETBG、HNBG等方法相比,U3DT将平均误差降低了60.4% ~ 71.2%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Computer Networks
Computer Networks 工程技术-电信学
CiteScore
10.80
自引率
3.60%
发文量
434
审稿时长
8.6 months
期刊介绍: Computer Networks is an international, archival journal providing a publication vehicle for complete coverage of all topics of interest to those involved in the computer communications networking area. The audience includes researchers, managers and operators of networks as well as designers and implementors. The Editorial Board will consider any material for publication that is of interest to those groups.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信