Chuan Ding , Zeping Wang , Kao Shi , Sunan Li , Xinyue Dou , Yan Ning , Gang Cheng , Qiao Yang , Xianan Sang , Mengyun Peng , Qiang Lyu , Lu Wang , Xin Han , Gang Cao
{"title":"Taxifolin attenuates liver fibrosis by regulating the phosphorylation of NDRG1 at Thr328 via hepatocyte-stellate cell cross talk","authors":"Chuan Ding , Zeping Wang , Kao Shi , Sunan Li , Xinyue Dou , Yan Ning , Gang Cheng , Qiao Yang , Xianan Sang , Mengyun Peng , Qiang Lyu , Lu Wang , Xin Han , Gang Cao","doi":"10.1016/j.apsb.2025.02.017","DOIUrl":null,"url":null,"abstract":"<div><div>Taxifolin (TAX) is a natural compound known for its liver protection effect, but the mechanism remains unknown. Phosphorylated proteomics analyses discovered that the phosphorylation level of NDRG1 at T328 was a key event of TAX-improved liver fibrosis. We established models with NDRG1 knockout (KO) <em>in vivo</em> and <em>in vitro,</em> demonstrating that NDRG1 KO attenuated the development of hepatocyte injury, and combining NDRG1 KO and TAX administration did not result in a reduction in protection against liver injury. Cellular thermal shift assay and surface plasma resonance analysis showed that TAX directly binds to NDRG1 rather than its upstream kinase, subsequently demonstrating that TAX regulated phosphorylation of NDRG1 at T328 through binding to its C289 site. NDRG1 T328A (phosphorylated mutation) and T328E (mimic phosphorylation) <em>in vivo</em> and <em>in vitro</em> confirmed that pNDRG1<sub>T328</sub> exacerbates hepatocyte injury along with DNA damage, inflammatory response, and apoptosis, thereby contributing to hepatic stellate cells (HSCs) activation. In contrast, TAX can inhibit the above pathological abnormalities and block hepatocyte injury-triggered HSCs activation and fibrosis. Overall, TAX is a potent liver protection drug primarily targeting NDRG1 and inhibiting pNDRG1<sub>T328</sub> in hepatocytes.</div></div>","PeriodicalId":6906,"journal":{"name":"Acta Pharmaceutica Sinica. B","volume":"15 4","pages":"Pages 2059-2076"},"PeriodicalIF":14.7000,"publicationDate":"2025-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta Pharmaceutica Sinica. B","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2211383525000905","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
引用次数: 0
Abstract
Taxifolin (TAX) is a natural compound known for its liver protection effect, but the mechanism remains unknown. Phosphorylated proteomics analyses discovered that the phosphorylation level of NDRG1 at T328 was a key event of TAX-improved liver fibrosis. We established models with NDRG1 knockout (KO) in vivo and in vitro, demonstrating that NDRG1 KO attenuated the development of hepatocyte injury, and combining NDRG1 KO and TAX administration did not result in a reduction in protection against liver injury. Cellular thermal shift assay and surface plasma resonance analysis showed that TAX directly binds to NDRG1 rather than its upstream kinase, subsequently demonstrating that TAX regulated phosphorylation of NDRG1 at T328 through binding to its C289 site. NDRG1 T328A (phosphorylated mutation) and T328E (mimic phosphorylation) in vivo and in vitro confirmed that pNDRG1T328 exacerbates hepatocyte injury along with DNA damage, inflammatory response, and apoptosis, thereby contributing to hepatic stellate cells (HSCs) activation. In contrast, TAX can inhibit the above pathological abnormalities and block hepatocyte injury-triggered HSCs activation and fibrosis. Overall, TAX is a potent liver protection drug primarily targeting NDRG1 and inhibiting pNDRG1T328 in hepatocytes.
Acta Pharmaceutica Sinica. BPharmacology, Toxicology and Pharmaceutics-General Pharmacology, Toxicology and Pharmaceutics
CiteScore
22.40
自引率
5.50%
发文量
1051
审稿时长
19 weeks
期刊介绍:
The Journal of the Institute of Materia Medica, Chinese Academy of Medical Sciences, and the Chinese Pharmaceutical Association oversees the peer review process for Acta Pharmaceutica Sinica. B (APSB).
Published monthly in English, APSB is dedicated to disseminating significant original research articles, rapid communications, and high-quality reviews that highlight recent advances across various pharmaceutical sciences domains. These encompass pharmacology, pharmaceutics, medicinal chemistry, natural products, pharmacognosy, pharmaceutical analysis, and pharmacokinetics.
A part of the Acta Pharmaceutica Sinica series, established in 1953 and indexed in prominent databases like Chemical Abstracts, Index Medicus, SciFinder Scholar, Biological Abstracts, International Pharmaceutical Abstracts, Cambridge Scientific Abstracts, and Current Bibliography on Science and Technology, APSB is sponsored by the Institute of Materia Medica, Chinese Academy of Medical Sciences, and the Chinese Pharmaceutical Association. Its production and hosting are facilitated by Elsevier B.V. This collaborative effort ensures APSB's commitment to delivering valuable contributions to the pharmaceutical sciences community.