Impact of CT reconstruction algorithms on pericoronary and epicardial adipose tissue attenuation

IF 3.2 3区 医学 Q1 RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING
Huawei Xiao , Xiangquan Wang , Panfeng Yang , Ling Wang , Jiada Xi , Jian Xu
{"title":"Impact of CT reconstruction algorithms on pericoronary and epicardial adipose tissue attenuation","authors":"Huawei Xiao ,&nbsp;Xiangquan Wang ,&nbsp;Panfeng Yang ,&nbsp;Ling Wang ,&nbsp;Jiada Xi ,&nbsp;Jian Xu","doi":"10.1016/j.ejrad.2025.112132","DOIUrl":null,"url":null,"abstract":"<div><h3>Objective</h3><div>This study aims to investigate the impact of adaptive statistical iterative reconstruction-Veo (ASIR-V) and deep learning image reconstruction (DLIR) algorithms on the quantification of pericoronary adipose tissue (PCAT) and epicardial adipose tissue (EAT). Furthermore, we propose to explore the feasibility of correcting the effects through fat threshold adjustment.</div></div><div><h3>Methods</h3><div>A retrospective analysis was conducted on the imaging data of 134 patients who underwent coronary CT angiography (CCTA) between December 2023 and January 2024. These data were reconstructed into seven datasets using filtered back projection (FBP), ASIR-V at three different intensities (ASIR-V 30%, ASIR-V 50%, ASIR-V 70%), and DLIR at three different intensities (DLIR-L, DLIR-M, DLIR-H). Repeated-measures ANOVA was used to compare differences in fat, PCAT and EAT attenuation values among the reconstruction algorithms, and Bland-Altman plots were used to analyze the agreement between ASIR-V or DLIR and FBP algorithms in PCAT attenuation values.</div></div><div><h3>Results</h3><div>Compared to FBP, ASIR-V 30 %, ASIR-V 50 %, ASIR-V 70 %, DLIR-L, DLIR-M, and DLIR-H significantly increased fat attenuation values (−103.91 ± 12.99 HU, −102.53 ± 12.68 HU, −101.14 ± 12.78 HU, −101.81 ± 12.41 HU, −100.87 ± 12.25 HU, −99.08 ± 12.00 HU vs. −105.95 ± 13.01 HU, all <em>p</em> &lt; 0.001). When the fat threshold was set at −190 to −30 HU, ASIR-V and DLIR algorithms significantly increased PCAT and EAT attenuation values compared to FBP algorithm (all <em>p</em> &lt; 0.05), with these values increasing as the reconstruction intensity level increased. After correction with a fat threshold of −200 to −35 HU for ASIR-V 30 %, −200 to −40 HU for ASIR-V 50 % and DLIR-L, and −200 to −45 HU for ASIR-V 70 %, DLIR-M, and DLIR-H, the mean differences in PCAT attenuation values between ASIR-V or DLIR and FBP algorithms decreased (−0.03 to 1.68 HU vs. 2.35 to 8.69 HU), and no significant difference was found in PCAT attenuation values between FBP and ASIR-V 30 %, ASIR-V 50 %, ASIR-V 70 %, DLIR-L, and DLIR-M (all <em>p</em> &gt; 0.05).</div></div><div><h3>Conclusion</h3><div>Compared to the FBP algorithm, ASIR-V and DLIR algorithms increase PCAT and EAT attenuation values. Adjusting the fat threshold can mitigate the impact of ASIR-V and DLIR algorithms on PCAT attenuation values.</div></div>","PeriodicalId":12063,"journal":{"name":"European Journal of Radiology","volume":"188 ","pages":"Article 112132"},"PeriodicalIF":3.2000,"publicationDate":"2025-04-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"European Journal of Radiology","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0720048X25002189","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING","Score":null,"Total":0}
引用次数: 0

Abstract

Objective

This study aims to investigate the impact of adaptive statistical iterative reconstruction-Veo (ASIR-V) and deep learning image reconstruction (DLIR) algorithms on the quantification of pericoronary adipose tissue (PCAT) and epicardial adipose tissue (EAT). Furthermore, we propose to explore the feasibility of correcting the effects through fat threshold adjustment.

Methods

A retrospective analysis was conducted on the imaging data of 134 patients who underwent coronary CT angiography (CCTA) between December 2023 and January 2024. These data were reconstructed into seven datasets using filtered back projection (FBP), ASIR-V at three different intensities (ASIR-V 30%, ASIR-V 50%, ASIR-V 70%), and DLIR at three different intensities (DLIR-L, DLIR-M, DLIR-H). Repeated-measures ANOVA was used to compare differences in fat, PCAT and EAT attenuation values among the reconstruction algorithms, and Bland-Altman plots were used to analyze the agreement between ASIR-V or DLIR and FBP algorithms in PCAT attenuation values.

Results

Compared to FBP, ASIR-V 30 %, ASIR-V 50 %, ASIR-V 70 %, DLIR-L, DLIR-M, and DLIR-H significantly increased fat attenuation values (−103.91 ± 12.99 HU, −102.53 ± 12.68 HU, −101.14 ± 12.78 HU, −101.81 ± 12.41 HU, −100.87 ± 12.25 HU, −99.08 ± 12.00 HU vs. −105.95 ± 13.01 HU, all p < 0.001). When the fat threshold was set at −190 to −30 HU, ASIR-V and DLIR algorithms significantly increased PCAT and EAT attenuation values compared to FBP algorithm (all p < 0.05), with these values increasing as the reconstruction intensity level increased. After correction with a fat threshold of −200 to −35 HU for ASIR-V 30 %, −200 to −40 HU for ASIR-V 50 % and DLIR-L, and −200 to −45 HU for ASIR-V 70 %, DLIR-M, and DLIR-H, the mean differences in PCAT attenuation values between ASIR-V or DLIR and FBP algorithms decreased (−0.03 to 1.68 HU vs. 2.35 to 8.69 HU), and no significant difference was found in PCAT attenuation values between FBP and ASIR-V 30 %, ASIR-V 50 %, ASIR-V 70 %, DLIR-L, and DLIR-M (all p > 0.05).

Conclusion

Compared to the FBP algorithm, ASIR-V and DLIR algorithms increase PCAT and EAT attenuation values. Adjusting the fat threshold can mitigate the impact of ASIR-V and DLIR algorithms on PCAT attenuation values.
CT重建算法对冠状动脉周围和心外膜脂肪组织衰减的影响
目的探讨自适应统计迭代重建- veo (ASIR-V)和深度学习图像重建(DLIR)算法对冠状动脉周围脂肪组织(PCAT)和心外膜脂肪组织(EAT)定量的影响。此外,我们建议探讨通过调整脂肪阈值来纠正这种影响的可行性。方法回顾性分析2023年12月至2024年1月行冠状动脉CT血管造影(CCTA)的134例患者的影像资料。这些数据通过滤波后投影(FBP)、3种不同强度的ASIR-V (ASIR-V 30%、ASIR-V 50%、ASIR-V 70%)和3种不同强度的DLIR (DLIR- l、DLIR- m、DLIR- h)重建为7个数据集。采用重复测量方差分析比较不同重建算法在脂肪、PCAT和EAT衰减值上的差异,采用Bland-Altman图分析ASIR-V或DLIR与FBP算法在PCAT衰减值上的一致性。结果与FBP相比,ASIR-V 30%、ASIR-V 50%、ASIR-V 70%、DLIR-L、DLIR-M和DLIR-H显著提高了脂肪衰减值(- 103.91±12.99 HU、- 102.53±12.68 HU、- 101.14±12.78 HU、- 101.81±12.41 HU、- 100.87±12.25 HU、- 99.08±12.00 HU vs - 105.95±13.01 HU, p <;0.001)。当脂肪阈值设置为- 190至- 30 HU时,与FBP算法相比,ASIR-V和DLIR算法显著提高了PCAT和EAT衰减值(均p <;0.05),随着重建强度的增加,这些数值逐渐增大。​0.05)。结论与FBP算法相比,ASIR-V和DLIR算法提高了PCAT和EAT的衰减值。调整脂肪阈值可以减轻ASIR-V和DLIR算法对PCAT衰减值的影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
6.70
自引率
3.00%
发文量
398
审稿时长
42 days
期刊介绍: European Journal of Radiology is an international journal which aims to communicate to its readers, state-of-the-art information on imaging developments in the form of high quality original research articles and timely reviews on current developments in the field. Its audience includes clinicians at all levels of training including radiology trainees, newly qualified imaging specialists and the experienced radiologist. Its aim is to inform efficient, appropriate and evidence-based imaging practice to the benefit of patients worldwide.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信