{"title":"Experimental investigation of fatigue crack propagation under non-proportional multiaxial loading","authors":"Bemin Sheen, Catrin Davies, David Nowell","doi":"10.1016/j.ijfatigue.2025.109015","DOIUrl":null,"url":null,"abstract":"<div><div>Blisks (bladed disks) are critical components in modern aero-engines that offer significant weight savings compared to conventional blade and disk rotor designs, resulting in improved fuel efficiency. However, due to their integrated design, blisks are susceptible to unique failure modes following foreign object damage (FOD) and crack initiation. Of particular interest is the trajectory of crack propagation from FOD sites, which determines whether failure will occur via a blade-off event or rupture of the blisk.</div><div>This work presents an experimental test setup which replicates the key features of non-proportional loading in a blisk. A novel feature of the test rig was the ability to apply loads independently in three axes using a biaxial machine equipped with only two hydraulic servo-actuators. A series of multiaxial fatigue tests were completed on notched cruciform specimens and a wide range of crack trajectories were achieved, validating the design of the test rig.</div><div>Crack trajectories produced by non-proportional load paths are not accurately predicted by conventional criteria, such as the maximum tensile stress criterion (MTS), when cracks are subject to high mean mode-II loads. The results of these experiments underscore the complexity of modelling non-proportionally loaded cracks and the acquired crack trajectory data is a useful tool for validating further models.</div></div>","PeriodicalId":14112,"journal":{"name":"International Journal of Fatigue","volume":"199 ","pages":"Article 109015"},"PeriodicalIF":6.8000,"publicationDate":"2025-05-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Fatigue","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0142112325002129","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Blisks (bladed disks) are critical components in modern aero-engines that offer significant weight savings compared to conventional blade and disk rotor designs, resulting in improved fuel efficiency. However, due to their integrated design, blisks are susceptible to unique failure modes following foreign object damage (FOD) and crack initiation. Of particular interest is the trajectory of crack propagation from FOD sites, which determines whether failure will occur via a blade-off event or rupture of the blisk.
This work presents an experimental test setup which replicates the key features of non-proportional loading in a blisk. A novel feature of the test rig was the ability to apply loads independently in three axes using a biaxial machine equipped with only two hydraulic servo-actuators. A series of multiaxial fatigue tests were completed on notched cruciform specimens and a wide range of crack trajectories were achieved, validating the design of the test rig.
Crack trajectories produced by non-proportional load paths are not accurately predicted by conventional criteria, such as the maximum tensile stress criterion (MTS), when cracks are subject to high mean mode-II loads. The results of these experiments underscore the complexity of modelling non-proportionally loaded cracks and the acquired crack trajectory data is a useful tool for validating further models.
期刊介绍:
Typical subjects discussed in International Journal of Fatigue address:
Novel fatigue testing and characterization methods (new kinds of fatigue tests, critical evaluation of existing methods, in situ measurement of fatigue degradation, non-contact field measurements)
Multiaxial fatigue and complex loading effects of materials and structures, exploring state-of-the-art concepts in degradation under cyclic loading
Fatigue in the very high cycle regime, including failure mode transitions from surface to subsurface, effects of surface treatment, processing, and loading conditions
Modeling (including degradation processes and related driving forces, multiscale/multi-resolution methods, computational hierarchical and concurrent methods for coupled component and material responses, novel methods for notch root analysis, fracture mechanics, damage mechanics, crack growth kinetics, life prediction and durability, and prediction of stochastic fatigue behavior reflecting microstructure and service conditions)
Models for early stages of fatigue crack formation and growth that explicitly consider microstructure and relevant materials science aspects
Understanding the influence or manufacturing and processing route on fatigue degradation, and embedding this understanding in more predictive schemes for mitigation and design against fatigue
Prognosis and damage state awareness (including sensors, monitoring, methodology, interactive control, accelerated methods, data interpretation)
Applications of technologies associated with fatigue and their implications for structural integrity and reliability. This includes issues related to design, operation and maintenance, i.e., life cycle engineering
Smart materials and structures that can sense and mitigate fatigue degradation
Fatigue of devices and structures at small scales, including effects of process route and surfaces/interfaces.