Md. Farhad Hossain , Kumudu S. Munasinghe , Nishant Jagannath , Khandakar Tanvir Ahmed , Md. Nabid Hasan , Ibrahim Elgendi , Abbas Jamalipour
{"title":"Demand side management with wireless channel impact in IoT-enabled smart grid system","authors":"Md. Farhad Hossain , Kumudu S. Munasinghe , Nishant Jagannath , Khandakar Tanvir Ahmed , Md. Nabid Hasan , Ibrahim Elgendi , Abbas Jamalipour","doi":"10.1016/j.dcan.2024.06.005","DOIUrl":null,"url":null,"abstract":"<div><div>Demand Side Management (DSM) is a vital issue in smart grids, given the time-varying user demand for electricity and power generation cost over a day. On the other hand, wireless communications with ubiquitous connectivity and low latency have emerged as a suitable option for smart grid. The design of any DSM system using a wireless network must consider the wireless link impairments, which is missing in existing literature. In this paper, we propose a DSM system using a Real-Time Pricing (RTP) mechanism and a wireless Neighborhood Area Network (NAN) with data transfer uncertainty. A Zigbee-based Internet of Things (IoT) model is considered for the communication infrastructure of the NAN. A sample NAN employing XBee and Raspberry Pi modules is also implemented in real-world settings to evaluate its reliability in transferring smart grid data over a wireless link. The proposed DSM system determines the optimal price corresponding to the optimum system welfare based on the two-way wireless communications among users, decision-makers, and energy providers. A novel cost function is adopted to reduce the impact of changes in user numbers on electricity prices. Simulation results indicate that the proposed system benefits users and energy providers. Furthermore, experimental results demonstrate that the success rate of data transfer significantly varies over the implemented wireless NAN, which can substantially impact the performance of the proposed DSM system. Further simulations are then carried out to quantify and analyze the impact of wireless communications on the electricity price, user welfare, and provider welfare.</div></div>","PeriodicalId":48631,"journal":{"name":"Digital Communications and Networks","volume":"11 2","pages":"Pages 493-504"},"PeriodicalIF":7.5000,"publicationDate":"2025-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Digital Communications and Networks","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2352864824000737","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"TELECOMMUNICATIONS","Score":null,"Total":0}
引用次数: 0
Abstract
Demand Side Management (DSM) is a vital issue in smart grids, given the time-varying user demand for electricity and power generation cost over a day. On the other hand, wireless communications with ubiquitous connectivity and low latency have emerged as a suitable option for smart grid. The design of any DSM system using a wireless network must consider the wireless link impairments, which is missing in existing literature. In this paper, we propose a DSM system using a Real-Time Pricing (RTP) mechanism and a wireless Neighborhood Area Network (NAN) with data transfer uncertainty. A Zigbee-based Internet of Things (IoT) model is considered for the communication infrastructure of the NAN. A sample NAN employing XBee and Raspberry Pi modules is also implemented in real-world settings to evaluate its reliability in transferring smart grid data over a wireless link. The proposed DSM system determines the optimal price corresponding to the optimum system welfare based on the two-way wireless communications among users, decision-makers, and energy providers. A novel cost function is adopted to reduce the impact of changes in user numbers on electricity prices. Simulation results indicate that the proposed system benefits users and energy providers. Furthermore, experimental results demonstrate that the success rate of data transfer significantly varies over the implemented wireless NAN, which can substantially impact the performance of the proposed DSM system. Further simulations are then carried out to quantify and analyze the impact of wireless communications on the electricity price, user welfare, and provider welfare.
期刊介绍:
Digital Communications and Networks is a prestigious journal that emphasizes on communication systems and networks. We publish only top-notch original articles and authoritative reviews, which undergo rigorous peer-review. We are proud to announce that all our articles are fully Open Access and can be accessed on ScienceDirect. Our journal is recognized and indexed by eminent databases such as the Science Citation Index Expanded (SCIE) and Scopus.
In addition to regular articles, we may also consider exceptional conference papers that have been significantly expanded. Furthermore, we periodically release special issues that focus on specific aspects of the field.
In conclusion, Digital Communications and Networks is a leading journal that guarantees exceptional quality and accessibility for researchers and scholars in the field of communication systems and networks.