CL-HOI: Cross-level human–object interaction distillation from multimodal large language models

IF 7.2 1区 计算机科学 Q1 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
Jianjun Gao , Chen Cai , Ruoyu Wang , Wenyang Liu , Kim-Hui Yap , Kratika Garg , Boon Siew Han
{"title":"CL-HOI: Cross-level human–object interaction distillation from multimodal large language models","authors":"Jianjun Gao ,&nbsp;Chen Cai ,&nbsp;Ruoyu Wang ,&nbsp;Wenyang Liu ,&nbsp;Kim-Hui Yap ,&nbsp;Kratika Garg ,&nbsp;Boon Siew Han","doi":"10.1016/j.knosys.2025.113561","DOIUrl":null,"url":null,"abstract":"<div><div>Human–object interaction (HOI) detection often relies on labor-intensive annotations, but multimodal large language models (MLLMs) show potential for recognizing and reasoning about image-level interactions. However, MLLMs are typically computationally heavy and lack instance-level HOI detection capabilities. In this paper, we propose a cross-level HOI distillation (CL-HOI) framework that distills instance-level HOI detection from MLLMs, expanding HOI detection without labor-intensive and expensive manual annotations. Our approach uses CL-HOI as a student model to distill HOIs from a teacher MLLM in two stages: context distillation, where a visual-linguistic translator (VLT) converts visual information into linguistic form, and interaction distillation, where an interaction cognition network (ICN) facilitates interaction reasoning. Contrastive distillation losses transfer image-level context and interactions to the VLT and ICN for instance-level HOI detection. Evaluations on the HICO-DET and V-COCO datasets show that our method outperforms existing weakly supervised approaches, demonstrating its effectiveness in HOI detection without manual annotations.</div></div>","PeriodicalId":49939,"journal":{"name":"Knowledge-Based Systems","volume":"320 ","pages":"Article 113561"},"PeriodicalIF":7.2000,"publicationDate":"2025-05-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Knowledge-Based Systems","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0950705125006070","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

Abstract

Human–object interaction (HOI) detection often relies on labor-intensive annotations, but multimodal large language models (MLLMs) show potential for recognizing and reasoning about image-level interactions. However, MLLMs are typically computationally heavy and lack instance-level HOI detection capabilities. In this paper, we propose a cross-level HOI distillation (CL-HOI) framework that distills instance-level HOI detection from MLLMs, expanding HOI detection without labor-intensive and expensive manual annotations. Our approach uses CL-HOI as a student model to distill HOIs from a teacher MLLM in two stages: context distillation, where a visual-linguistic translator (VLT) converts visual information into linguistic form, and interaction distillation, where an interaction cognition network (ICN) facilitates interaction reasoning. Contrastive distillation losses transfer image-level context and interactions to the VLT and ICN for instance-level HOI detection. Evaluations on the HICO-DET and V-COCO datasets show that our method outperforms existing weakly supervised approaches, demonstrating its effectiveness in HOI detection without manual annotations.
CL-HOI:从多模态大型语言模型中提取跨层人机交互
人-对象交互(HOI)检测通常依赖于劳动密集型的注释,但多模态大型语言模型(mllm)显示出识别和推理图像级交互的潜力。然而,mllm通常计算量很大,并且缺乏实例级HOI检测功能。在本文中,我们提出了一个跨层HOI蒸馏(CL-HOI)框架,该框架从mllm中提取实例级HOI检测,扩展了HOI检测,而无需劳动密集型和昂贵的手动注释。我们的方法使用CL-HOI作为学生模型从教师MLLM中提取hoi,分为两个阶段:上下文蒸馏,其中视觉语言翻译器(VLT)将视觉信息转换为语言形式;交互蒸馏,其中交互认知网络(ICN)促进交互推理。对比蒸馏损失将图像级上下文和相互作用传递给VLT和ICN,用于实例级HOI检测。对HICO-DET和V-COCO数据集的评估表明,我们的方法优于现有的弱监督方法,证明了它在没有人工注释的情况下检测HOI的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Knowledge-Based Systems
Knowledge-Based Systems 工程技术-计算机:人工智能
CiteScore
14.80
自引率
12.50%
发文量
1245
审稿时长
7.8 months
期刊介绍: Knowledge-Based Systems, an international and interdisciplinary journal in artificial intelligence, publishes original, innovative, and creative research results in the field. It focuses on knowledge-based and other artificial intelligence techniques-based systems. The journal aims to support human prediction and decision-making through data science and computation techniques, provide a balanced coverage of theory and practical study, and encourage the development and implementation of knowledge-based intelligence models, methods, systems, and software tools. Applications in business, government, education, engineering, and healthcare are emphasized.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信