Huiyuan Shi , Pu Jiang , Hui Li , Chengli Su , Ping Li
{"title":"Robust predictive tracking fault-tolerant control for multiphase switched systems with asynchronous switching: A Lyapunov–Razumikhin method","authors":"Huiyuan Shi , Pu Jiang , Hui Li , Chengli Su , Ping Li","doi":"10.1016/j.jprocont.2025.103451","DOIUrl":null,"url":null,"abstract":"<div><div>This paper develops a robust predictive tracking fault-tolerant control approach for a class typical of multiphase switched systems, i.e., multiphase batch processes, accompanied by asynchronous switching, small time delays, partial actuator faults and disturbances. First, an equivalent extended asynchronous switching model, including a match sub-model and a mismatch sub-model, is built. In this model, the Lyapunov–Razumikhin function method is chosen to handle time delays due to its ability to make the original states of the systems remain invariant set characteristics. Meanwhile, this method has the characteristics of small computation and low conservativeness in solving the linear matrix inequalities, which is appropriate for systems with small delays. Next, according to the stable sufficient conditions based on robust positively invariant sets and terminal constraint sets, the controller gains, the minimum and maximum dwell time are solved online to eliminate the asynchronous switching situation. Moreover, unlike the iterative learning method with globally constant controller gain, its system state cannot change in real time with the action of the desired controller gain, making state deviations occur over time. In contrast, the controller gain in this method can be corrected and updated to avoid state deviation issue in real time. Finally, a simulation case of injection molding process is used to demonstrate the feasibility of the proposed approach.</div></div>","PeriodicalId":50079,"journal":{"name":"Journal of Process Control","volume":"151 ","pages":"Article 103451"},"PeriodicalIF":3.3000,"publicationDate":"2025-05-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Process Control","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0959152425000794","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
引用次数: 0
Abstract
This paper develops a robust predictive tracking fault-tolerant control approach for a class typical of multiphase switched systems, i.e., multiphase batch processes, accompanied by asynchronous switching, small time delays, partial actuator faults and disturbances. First, an equivalent extended asynchronous switching model, including a match sub-model and a mismatch sub-model, is built. In this model, the Lyapunov–Razumikhin function method is chosen to handle time delays due to its ability to make the original states of the systems remain invariant set characteristics. Meanwhile, this method has the characteristics of small computation and low conservativeness in solving the linear matrix inequalities, which is appropriate for systems with small delays. Next, according to the stable sufficient conditions based on robust positively invariant sets and terminal constraint sets, the controller gains, the minimum and maximum dwell time are solved online to eliminate the asynchronous switching situation. Moreover, unlike the iterative learning method with globally constant controller gain, its system state cannot change in real time with the action of the desired controller gain, making state deviations occur over time. In contrast, the controller gain in this method can be corrected and updated to avoid state deviation issue in real time. Finally, a simulation case of injection molding process is used to demonstrate the feasibility of the proposed approach.
期刊介绍:
This international journal covers the application of control theory, operations research, computer science and engineering principles to the solution of process control problems. In addition to the traditional chemical processing and manufacturing applications, the scope of process control problems involves a wide range of applications that includes energy processes, nano-technology, systems biology, bio-medical engineering, pharmaceutical processing technology, energy storage and conversion, smart grid, and data analytics among others.
Papers on the theory in these areas will also be accepted provided the theoretical contribution is aimed at the application and the development of process control techniques.
Topics covered include:
• Control applications• Process monitoring• Plant-wide control• Process control systems• Control techniques and algorithms• Process modelling and simulation• Design methods
Advanced design methods exclude well established and widely studied traditional design techniques such as PID tuning and its many variants. Applications in fields such as control of automotive engines, machinery and robotics are not deemed suitable unless a clear motivation for the relevance to process control is provided.