Daniel Carbajo, Yolanda Pérez, Gabriela F. Castelo, Eva Prats, Jordi Bujons and Ignacio Alfonso*,
{"title":"Efficient Small-Molecule Reversal Agents for Anticoagulant Fondaparinux","authors":"Daniel Carbajo, Yolanda Pérez, Gabriela F. Castelo, Eva Prats, Jordi Bujons and Ignacio Alfonso*, ","doi":"10.1021/acsptsci.4c0074710.1021/acsptsci.4c00747","DOIUrl":null,"url":null,"abstract":"<p >Fondaparinux is a highly anionic synthetic heparinoid pentasaccharide used as an anticoagulant for specific clinical conditions and surgeries. As a non-natural small-molecule drug, it presents pharmacokinetic and pharmacodynamic advantages, as well as high stability and low immunogenicity, when compared with different forms of heparin. However, its broader usage is hampered by different factors like price, existence of alternative anticoagulants, or, specifically in this case, the lack of an effective antidote that is highly recommendable for avoiding uncontrolled bleeding. In this work, we describe two synthetic small molecules derived from spermine (3AC and 3FF) that efficiently revert the anticoagulant activity of fondaparinux. In an <i>in vitro</i> enzymatic assay related to blood coagulation, the spermine derivatives show potent activity as fondaparinux antidotes, with higher activity than ciraparantag (a small molecule in the clinical phase as an anticoagulant antidote) and much higher activity than protamine, the only approved antidote for unfractioned heparin but inefficient against fondaparinux. Remarkably, naked-eye <i>ex vivo</i> tests demonstrated their efficacy in freshly extracted mice blood. Mechanistic studies show that both small molecules strongly bind fondaparinux in buffered water, as detected by fluorescence and NMR spectroscopy and confirmed by molecular dynamics simulations. Thus, these spermine derivatives are promising reversal agents against heparinoid anticoagulants with a wide range of molecular weights, overcoming the drawbacks of those antidotes based on biomacromolecules.</p>","PeriodicalId":36426,"journal":{"name":"ACS Pharmacology and Translational Science","volume":"8 5","pages":"1333–1346 1333–1346"},"PeriodicalIF":4.9000,"publicationDate":"2025-04-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.acs.org/doi/epdf/10.1021/acsptsci.4c00747","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Pharmacology and Translational Science","FirstCategoryId":"1085","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acsptsci.4c00747","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MEDICINAL","Score":null,"Total":0}
引用次数: 0
Abstract
Fondaparinux is a highly anionic synthetic heparinoid pentasaccharide used as an anticoagulant for specific clinical conditions and surgeries. As a non-natural small-molecule drug, it presents pharmacokinetic and pharmacodynamic advantages, as well as high stability and low immunogenicity, when compared with different forms of heparin. However, its broader usage is hampered by different factors like price, existence of alternative anticoagulants, or, specifically in this case, the lack of an effective antidote that is highly recommendable for avoiding uncontrolled bleeding. In this work, we describe two synthetic small molecules derived from spermine (3AC and 3FF) that efficiently revert the anticoagulant activity of fondaparinux. In an in vitro enzymatic assay related to blood coagulation, the spermine derivatives show potent activity as fondaparinux antidotes, with higher activity than ciraparantag (a small molecule in the clinical phase as an anticoagulant antidote) and much higher activity than protamine, the only approved antidote for unfractioned heparin but inefficient against fondaparinux. Remarkably, naked-eye ex vivo tests demonstrated their efficacy in freshly extracted mice blood. Mechanistic studies show that both small molecules strongly bind fondaparinux in buffered water, as detected by fluorescence and NMR spectroscopy and confirmed by molecular dynamics simulations. Thus, these spermine derivatives are promising reversal agents against heparinoid anticoagulants with a wide range of molecular weights, overcoming the drawbacks of those antidotes based on biomacromolecules.
期刊介绍:
ACS Pharmacology & Translational Science publishes high quality, innovative, and impactful research across the broad spectrum of biological sciences, covering basic and molecular sciences through to translational preclinical studies. Clinical studies that address novel mechanisms of action, and methodological papers that provide innovation, and advance translation, will also be considered. We give priority to studies that fully integrate basic pharmacological and/or biochemical findings into physiological processes that have translational potential in a broad range of biomedical disciplines. Therefore, studies that employ a complementary blend of in vitro and in vivo systems are of particular interest to the journal. Nonetheless, all innovative and impactful research that has an articulated translational relevance will be considered.
ACS Pharmacology & Translational Science does not publish research on biological extracts that have unknown concentration or unknown chemical composition.
Authors are encouraged to use the pre-submission inquiry mechanism to ensure relevance and appropriateness of research.