Hongji Yang, Guorong Yu, Zhidong Lv, Tonghui Li, Xi Wang, Ying Fu, Zhangsheng Zhu, Guangjun Guo, Hang He, Ming Wang, Guochen Qin, Feng Liu, Zhenhui Zhong, Yan Xue
{"title":"Epigenome profiling reveals distinctive regulatory features and cis-regulatory elements in pepper","authors":"Hongji Yang, Guorong Yu, Zhidong Lv, Tonghui Li, Xi Wang, Ying Fu, Zhangsheng Zhu, Guangjun Guo, Hang He, Ming Wang, Guochen Qin, Feng Liu, Zhenhui Zhong, Yan Xue","doi":"10.1186/s13059-025-03595-6","DOIUrl":null,"url":null,"abstract":"Pepper (Capsicum annuum) is one of the earliest and most widely cultivated vegetable crops worldwide. While the large and complex genome of pepper severely hampered the understanding of its functional genome, it also indicates a rich yet unexplored reservoir of regulatory elements (REs). In fact, variations in the REs represent a major driving force in evolution and domestication in both plants and animals. However, identification of the REs remains difficult especially for plants with complex genomes. Here, we present a comprehensive epigenomic landscape of Capsicum annuum, Zhangshugang (ST-8), including chromatin accessibility, histone modifications, DNA methylation, and transcriptome. We also develop comparative crosslinked immunoprecipitation mass spectrometry to reveal the proteome associated with certain chromatin features. Through integrated analysis of these epigenetic features, we profile promoters and enhancers involved in development, heat stress and cucumber mosaic virus challenges. We generate stress responsive expression networks composed of potential transcription activators and their target genes. Through population genetics analysis, we demonstrate that some regulatory elements show lower nucleotide diversity compare to other genomic regions during evolution. We demonstrate that variations in the REs may contribute to more diversified and agronomically desired phenotypes. Our study provides a foundation not only for studying gene regulation, but also for targeted genetic and epigenetic manipulation for pepper improvement.","PeriodicalId":12611,"journal":{"name":"Genome Biology","volume":"12 1","pages":""},"PeriodicalIF":10.1000,"publicationDate":"2025-05-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Genome Biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1186/s13059-025-03595-6","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Pepper (Capsicum annuum) is one of the earliest and most widely cultivated vegetable crops worldwide. While the large and complex genome of pepper severely hampered the understanding of its functional genome, it also indicates a rich yet unexplored reservoir of regulatory elements (REs). In fact, variations in the REs represent a major driving force in evolution and domestication in both plants and animals. However, identification of the REs remains difficult especially for plants with complex genomes. Here, we present a comprehensive epigenomic landscape of Capsicum annuum, Zhangshugang (ST-8), including chromatin accessibility, histone modifications, DNA methylation, and transcriptome. We also develop comparative crosslinked immunoprecipitation mass spectrometry to reveal the proteome associated with certain chromatin features. Through integrated analysis of these epigenetic features, we profile promoters and enhancers involved in development, heat stress and cucumber mosaic virus challenges. We generate stress responsive expression networks composed of potential transcription activators and their target genes. Through population genetics analysis, we demonstrate that some regulatory elements show lower nucleotide diversity compare to other genomic regions during evolution. We demonstrate that variations in the REs may contribute to more diversified and agronomically desired phenotypes. Our study provides a foundation not only for studying gene regulation, but also for targeted genetic and epigenetic manipulation for pepper improvement.
Genome BiologyBiochemistry, Genetics and Molecular Biology-Genetics
CiteScore
21.00
自引率
3.30%
发文量
241
审稿时长
2 months
期刊介绍:
Genome Biology stands as a premier platform for exceptional research across all domains of biology and biomedicine, explored through a genomic and post-genomic lens.
With an impressive impact factor of 12.3 (2022),* the journal secures its position as the 3rd-ranked research journal in the Genetics and Heredity category and the 2nd-ranked research journal in the Biotechnology and Applied Microbiology category by Thomson Reuters. Notably, Genome Biology holds the distinction of being the highest-ranked open-access journal in this category.
Our dedicated team of highly trained in-house Editors collaborates closely with our esteemed Editorial Board of international experts, ensuring the journal remains on the forefront of scientific advances and community standards. Regular engagement with researchers at conferences and institute visits underscores our commitment to staying abreast of the latest developments in the field.