{"title":"Regulation of H3K4me3 breadth and MYC expression by the SETD1B catalytic domain in MLL-rearranged leukemia","authors":"Shintaro Izumi, Ko Ohtani, Makoto Matsumoto, Seito Shibata, Bahityar Rahmutulla, Masaki Fukuyo, Mitsutaka Nishimoto, Hideo Miyagawa, Emiko Sakaida, Koutaro Yokote, Issay Kitabayashi, Kimi Araki, Atsushi Kaneda, Takayuki Hoshii","doi":"10.1038/s41375-025-02638-y","DOIUrl":null,"url":null,"abstract":"<p>Histone H3 lysine 4 trimethylation (H3K4me3) is abundant in mixed-lineage leukemia-rearranged (MLL-r) acute myeloid leukemia (AML) cells; however, the responsible enzymes and their roles remain unclear. This study aimed to identify the modifier responsible for high H3K4me3 modification in MLL-r leukemia and its downstream targets essential for the cell proliferation. Here, we performed a CRISPR-tiling screen against known H3K4 methylation modifiers in an MLL-r AML model. Disrupting the SETD1B catalytic SET domain caused depletion of FLT3-ITD or Nras<sup>G12D</sup>-expressing AML cells, and gene expression downregulation, particularly in the MYC pathway. SETD1B SET domain loss results in a significant decrease in H3K4me3 breadth. Exogenous MYC expression or disrupting H3K4 demethylase KDM5C significantly restored growth defects in SETD1B SET domain-mutant cells. These data indicated that SETD1B was required for H3K4me3 breadth and MYC expression. Thus, a thorough understanding of SETD1B-mediated H3K4me3 breadth is critical for developing markers and therapies for MYC-dependent leukemia subtypes.</p>","PeriodicalId":18109,"journal":{"name":"Leukemia","volume":"35 1","pages":""},"PeriodicalIF":12.8000,"publicationDate":"2025-05-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Leukemia","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1038/s41375-025-02638-y","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"HEMATOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Histone H3 lysine 4 trimethylation (H3K4me3) is abundant in mixed-lineage leukemia-rearranged (MLL-r) acute myeloid leukemia (AML) cells; however, the responsible enzymes and their roles remain unclear. This study aimed to identify the modifier responsible for high H3K4me3 modification in MLL-r leukemia and its downstream targets essential for the cell proliferation. Here, we performed a CRISPR-tiling screen against known H3K4 methylation modifiers in an MLL-r AML model. Disrupting the SETD1B catalytic SET domain caused depletion of FLT3-ITD or NrasG12D-expressing AML cells, and gene expression downregulation, particularly in the MYC pathway. SETD1B SET domain loss results in a significant decrease in H3K4me3 breadth. Exogenous MYC expression or disrupting H3K4 demethylase KDM5C significantly restored growth defects in SETD1B SET domain-mutant cells. These data indicated that SETD1B was required for H3K4me3 breadth and MYC expression. Thus, a thorough understanding of SETD1B-mediated H3K4me3 breadth is critical for developing markers and therapies for MYC-dependent leukemia subtypes.
期刊介绍:
Title: Leukemia
Journal Overview:
Publishes high-quality, peer-reviewed research
Covers all aspects of research and treatment of leukemia and allied diseases
Includes studies of normal hemopoiesis due to comparative relevance
Topics of Interest:
Oncogenes
Growth factors
Stem cells
Leukemia genomics
Cell cycle
Signal transduction
Molecular targets for therapy
And more
Content Types:
Original research articles
Reviews
Letters
Correspondence
Comments elaborating on significant advances and covering topical issues