Mid-Infrared Reflectance and Emissivity Spectra of High Porosity Regoliths

IF 3.9 1区 地球科学 Q1 GEOCHEMISTRY & GEOPHYSICS
Audrey C. Martin, Joshua P. Emery, Mark Loeffler, Kerri L. Donaldson Hanna
{"title":"Mid-Infrared Reflectance and Emissivity Spectra of High Porosity Regoliths","authors":"Audrey C. Martin,&nbsp;Joshua P. Emery,&nbsp;Mark Loeffler,&nbsp;Kerri L. Donaldson Hanna","doi":"10.1029/2024JE008331","DOIUrl":null,"url":null,"abstract":"<p>Mid-infrared (MIR; 5–35 μm) spectroscopy is often used for mineralogical identification on planetary surfaces. Laboratory spectra aiding remote sensing observations are typically performed in reflection geometries, while MIR spectra of planetary surfaces are typically obtained via emission. Here we explore the validity of Kirchhoff's Law in converting reflectance to emissivity spectra, focusing on the high-porosity regoliths found on airless bodies such as the Moon and asteroids. Specifically, we compared ambient reflectance, ambient emissivity, and simulated asteroid environment (SAE) spectra of fine-particulate olivine and pyroxene with varying regolith porosities, focusing on how spectral features, including the Christiansen feature (CF), reststrahlen bands (RBs), and transparency features (TF), changed under these different conditions. Our results indicate that Kirchhoff's Law can be effectively employed to interpret 19 MIR reflectance spectra of high-porosity samples, provided environmental spectral effects (i.e., spectral changes due to different pressure and temperature conditions) are considered.</p>","PeriodicalId":16101,"journal":{"name":"Journal of Geophysical Research: Planets","volume":"130 5","pages":""},"PeriodicalIF":3.9000,"publicationDate":"2025-05-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1029/2024JE008331","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Geophysical Research: Planets","FirstCategoryId":"89","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1029/2024JE008331","RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GEOCHEMISTRY & GEOPHYSICS","Score":null,"Total":0}
引用次数: 0

Abstract

Mid-infrared (MIR; 5–35 μm) spectroscopy is often used for mineralogical identification on planetary surfaces. Laboratory spectra aiding remote sensing observations are typically performed in reflection geometries, while MIR spectra of planetary surfaces are typically obtained via emission. Here we explore the validity of Kirchhoff's Law in converting reflectance to emissivity spectra, focusing on the high-porosity regoliths found on airless bodies such as the Moon and asteroids. Specifically, we compared ambient reflectance, ambient emissivity, and simulated asteroid environment (SAE) spectra of fine-particulate olivine and pyroxene with varying regolith porosities, focusing on how spectral features, including the Christiansen feature (CF), reststrahlen bands (RBs), and transparency features (TF), changed under these different conditions. Our results indicate that Kirchhoff's Law can be effectively employed to interpret 19 MIR reflectance spectra of high-porosity samples, provided environmental spectral effects (i.e., spectral changes due to different pressure and temperature conditions) are considered.

Abstract Image

高孔隙度风化岩的中红外反射率和发射率光谱
中红外(米尔;5-35 μm光谱学常用于行星表面的矿物学鉴定。辅助遥感观测的实验室光谱通常在反射几何中进行,而行星表面的MIR光谱通常通过发射获得。在这里,我们探索Kirchhoff定律在将反射率转换为发射率光谱方面的有效性,重点关注在月球和小行星等无空气物体上发现的高孔隙度风化层。具体而言,我们比较了不同风化层孔隙度的细颗粒橄榄石和辉石的环境反射率、环境发射率和模拟小行星环境(SAE)光谱,重点研究了光谱特征,包括Christiansen特征(CF)、reststrahlen波段(RBs)和透明度特征(TF)在这些不同条件下的变化。我们的研究结果表明,在考虑环境光谱效应(即不同压力和温度条件下的光谱变化)的情况下,基尔霍夫定律可以有效地解释高孔隙度样品的19个MIR反射光谱。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Geophysical Research: Planets
Journal of Geophysical Research: Planets Earth and Planetary Sciences-Earth and Planetary Sciences (miscellaneous)
CiteScore
8.00
自引率
27.10%
发文量
254
期刊介绍: The Journal of Geophysical Research Planets is dedicated to the publication of new and original research in the broad field of planetary science. Manuscripts concerning planetary geology, geophysics, geochemistry, atmospheres, and dynamics are appropriate for the journal when they increase knowledge about the processes that affect Solar System objects. Manuscripts concerning other planetary systems, exoplanets or Earth are welcome when presented in a comparative planetology perspective. Studies in the field of astrobiology will be considered when they have immediate consequences for the interpretation of planetary data. JGR: Planets does not publish manuscripts that deal with future missions and instrumentation, nor those that are primarily of an engineering interest. Instrument, calibration or data processing papers may be appropriate for the journal, but only when accompanied by scientific analysis and interpretation that increases understanding of the studied object. A manuscript that describes a new method or technique would be acceptable for JGR: Planets if it contained new and relevant scientific results obtained using the method. Review articles are generally not appropriate for JGR: Planets, but they may be considered if they form an integral part of a special issue.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信