Vinpocetine Mitigates Methotrexate-Induced Liver Injury in Rats Through Modulating Intercellular Communication

IF 3.2 3区 医学 Q2 BIOCHEMISTRY & MOLECULAR BIOLOGY
Gellan Alaa Mohamed Kamel, Shaimaa Hussein
{"title":"Vinpocetine Mitigates Methotrexate-Induced Liver Injury in Rats Through Modulating Intercellular Communication","authors":"Gellan Alaa Mohamed Kamel,&nbsp;Shaimaa Hussein","doi":"10.1002/jbt.70300","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>Methotrexate (MTX) has been widely implemented in managing several malignancies, inflammatory conditions such as rheumatic arthritis, and autoimmune illnesses. Hepatotoxicity is a significant side effect of MTX, characterized by increased oxidative stress (OS) and inflammation. Vinpocetine (Vinpo) is a prescription medication with a favorable safety profile. It exerts anti-inflammatory and oxidant implications that might be novel candidates for protecting against MTX-induced hepatotoxicity. This study investigates the therapeutic impact of Vinpo against MTX-stimulated liver damage via the nuclear factor erythroid 2-related factor 2 (Nrf2)/heme oxygenase-1 (HO-1) and nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) pathways. Rats are allocated into three groups: (1) the Control (saline); (2) the MTX-control (20 mg/kg; injected once i.p.), and (3) the Vinpo + MTX groups. Vinpo was administered orally for 7 days, during which MTX was given intraperitoneally once at the end of Day 3. The liver functions, OS markers, inflammatory mediators, Nrf2, HO-1, NF-κB, and apoptotic signals were estimated. Vinpo lead to enhancement in superoxide dismutase (SOD) enzyme activity, elevation in glutathione (GSH), and a hindrance in malondialdehyde (MDA). It also enhances Nrf2 and HO-1, inhibiting NF-κB (p65) expression and apoptotic markers. Moreover, Vinpo therapy, in conjunction with MTX, restores the normal histological structure of hepatic tissues. Our data suggested that Vinpo exerts a preventive effect against MTX-induced toxicity through anti-oxidative, anti-inflammatory, and apoptotic activities, mediated via Nrf2/HO-1/Nf-κB and caspase-3/Bax/Bcl-2 pathways.</p></div>","PeriodicalId":15151,"journal":{"name":"Journal of Biochemical and Molecular Toxicology","volume":"39 5","pages":""},"PeriodicalIF":3.2000,"publicationDate":"2025-05-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Biochemical and Molecular Toxicology","FirstCategoryId":"3","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/jbt.70300","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Methotrexate (MTX) has been widely implemented in managing several malignancies, inflammatory conditions such as rheumatic arthritis, and autoimmune illnesses. Hepatotoxicity is a significant side effect of MTX, characterized by increased oxidative stress (OS) and inflammation. Vinpocetine (Vinpo) is a prescription medication with a favorable safety profile. It exerts anti-inflammatory and oxidant implications that might be novel candidates for protecting against MTX-induced hepatotoxicity. This study investigates the therapeutic impact of Vinpo against MTX-stimulated liver damage via the nuclear factor erythroid 2-related factor 2 (Nrf2)/heme oxygenase-1 (HO-1) and nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) pathways. Rats are allocated into three groups: (1) the Control (saline); (2) the MTX-control (20 mg/kg; injected once i.p.), and (3) the Vinpo + MTX groups. Vinpo was administered orally for 7 days, during which MTX was given intraperitoneally once at the end of Day 3. The liver functions, OS markers, inflammatory mediators, Nrf2, HO-1, NF-κB, and apoptotic signals were estimated. Vinpo lead to enhancement in superoxide dismutase (SOD) enzyme activity, elevation in glutathione (GSH), and a hindrance in malondialdehyde (MDA). It also enhances Nrf2 and HO-1, inhibiting NF-κB (p65) expression and apoptotic markers. Moreover, Vinpo therapy, in conjunction with MTX, restores the normal histological structure of hepatic tissues. Our data suggested that Vinpo exerts a preventive effect against MTX-induced toxicity through anti-oxidative, anti-inflammatory, and apoptotic activities, mediated via Nrf2/HO-1/Nf-κB and caspase-3/Bax/Bcl-2 pathways.

Abstract Image

长春西汀通过调节细胞间通讯减轻甲氨蝶呤诱导的大鼠肝损伤
甲氨蝶呤(MTX)已被广泛应用于治疗多种恶性肿瘤、炎症性疾病,如风湿性关节炎和自身免疫性疾病。肝毒性是MTX的显著副作用,其特征是氧化应激(OS)增加和炎症。长春西汀(Vinpo)是一种具有良好安全性的处方药。它具有抗炎和氧化作用,可能是防止mtx诱导的肝毒性的新候选物。本研究通过核因子红细胞2相关因子2 (Nrf2)/血红素加氧酶-1 (HO-1)和活化B细胞核因子κB轻链增强子(NF-κB)途径探讨Vinpo对mtx刺激的肝损伤的治疗作用。将大鼠分为三组:(1)对照组(生理盐水);(2) mtx对照(20 mg/kg);(3) Vinpo + MTX组。Vinpo口服7天,MTX在第3天结束时腹腔注射1次。测定肝功能、OS标志物、炎症介质、Nrf2、HO-1、NF-κB及凋亡信号。Vinpo导致超氧化物歧化酶(SOD)酶活性的增强,谷胱甘肽(GSH)的升高和丙二醛(MDA)的阻碍。它还能增强Nrf2和HO-1,抑制NF-κB (p65)的表达和凋亡标志物。此外,Vinpo治疗,结合MTX,恢复肝组织的正常组织学结构。我们的数据表明,Vinpo通过Nrf2/HO-1/Nf-κB和caspase-3/Bax/Bcl-2途径介导的抗氧化、抗炎和凋亡活性,对mtx诱导的毒性具有预防作用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
5.80
自引率
2.80%
发文量
277
审稿时长
6-12 weeks
期刊介绍: The Journal of Biochemical and Molecular Toxicology is an international journal that contains original research papers, rapid communications, mini-reviews, and book reviews, all focusing on the molecular mechanisms of action and detoxication of exogenous and endogenous chemicals and toxic agents. The scope includes effects on the organism at all stages of development, on organ systems, tissues, and cells as well as on enzymes, receptors, hormones, and genes. The biochemical and molecular aspects of uptake, transport, storage, excretion, lactivation and detoxication of drugs, agricultural, industrial and environmental chemicals, natural products and food additives are all subjects suitable for publication. Of particular interest are aspects of molecular biology related to biochemical toxicology. These include studies of the expression of genes related to detoxication and activation enzymes, toxicants with modes of action involving effects on nucleic acids, gene expression and protein synthesis, and the toxicity of products derived from biotechnology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信