CDxLSTM: Boosting Remote Sensing Change Detection With Extended Long Short-Term Memory

Zhenkai Wu;Xiaowen Ma;Rongrong Lian;Kai Zheng;Wei Zhang
{"title":"CDxLSTM: Boosting Remote Sensing Change Detection With Extended Long Short-Term Memory","authors":"Zhenkai Wu;Xiaowen Ma;Rongrong Lian;Kai Zheng;Wei Zhang","doi":"10.1109/LGRS.2025.3562480","DOIUrl":null,"url":null,"abstract":"In complex scenes and varied conditions, effectively integrating spatial-temporal context is crucial for accurately identifying changes. However, current remote sensing change detection (RS-CD) methods lack a balanced consideration of performance and efficiency. CNNs lack global context, transformers are computationally expensive, and Mambas face compute unified device architecture (CUDA) dependence and local correlation loss. In this letter, we propose CDxLSTM, with a core component that is a powerful xLSTM-based feature enhancer (FE) layer, integrating the advantages of linear computational complexity, global context perception, and strong interpretability. Specifically, we introduce a scale-specific FE layer, incorporating a cross-temporal global perceptron (CTGP) customized for semantic-accurate deep features, and a cross-temporal spatial refiner (CTSR) customized for detail-rich shallow features. In addition, we propose a cross-scale interactive fusion (CSIF) module to progressively interact global change representations with spatial responses. Extensive experimental results demonstrate that CDxLSTM achieves state-of-the-art performance across three benchmark datasets, offering a compelling balance between efficiency and accuracy. Code is available at <uri>https://github.com/xwmaxwma/rschange</uri>","PeriodicalId":91017,"journal":{"name":"IEEE geoscience and remote sensing letters : a publication of the IEEE Geoscience and Remote Sensing Society","volume":"22 ","pages":"1-5"},"PeriodicalIF":0.0000,"publicationDate":"2025-04-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE geoscience and remote sensing letters : a publication of the IEEE Geoscience and Remote Sensing Society","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10969801/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In complex scenes and varied conditions, effectively integrating spatial-temporal context is crucial for accurately identifying changes. However, current remote sensing change detection (RS-CD) methods lack a balanced consideration of performance and efficiency. CNNs lack global context, transformers are computationally expensive, and Mambas face compute unified device architecture (CUDA) dependence and local correlation loss. In this letter, we propose CDxLSTM, with a core component that is a powerful xLSTM-based feature enhancer (FE) layer, integrating the advantages of linear computational complexity, global context perception, and strong interpretability. Specifically, we introduce a scale-specific FE layer, incorporating a cross-temporal global perceptron (CTGP) customized for semantic-accurate deep features, and a cross-temporal spatial refiner (CTSR) customized for detail-rich shallow features. In addition, we propose a cross-scale interactive fusion (CSIF) module to progressively interact global change representations with spatial responses. Extensive experimental results demonstrate that CDxLSTM achieves state-of-the-art performance across three benchmark datasets, offering a compelling balance between efficiency and accuracy. Code is available at https://github.com/xwmaxwma/rschange
CDxLSTM:扩展长短期记忆的遥感变化检测
在复杂的场景和多变的条件下,有效整合时空背景是准确识别变化的关键。然而,目前的遥感变化检测方法缺乏对性能和效率的平衡考虑。cnn缺乏全局上下文,变压器计算成本高,Mambas面临计算统一设备架构(CUDA)依赖和局部相关损失。在这封信中,我们提出了CDxLSTM,其核心组件是一个强大的基于xlstm的特征增强器(FE)层,集成了线性计算复杂性、全局上下文感知和强可解释性的优点。具体来说,我们引入了一个特定尺度的FE层,其中包含一个针对语义精确的深层特征定制的跨时间全局感知器(CTGP),以及一个针对细节丰富的浅层特征定制的跨时间空间细化器(CTSR)。此外,我们提出了一个跨尺度交互融合(CSIF)模块,逐步将全球变化表征与空间响应进行交互。大量的实验结果表明,CDxLSTM在三个基准数据集上实现了最先进的性能,在效率和准确性之间提供了令人信服的平衡。代码可从https://github.com/xwmaxwma/rschange获得
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信