Genyuan Zhang;Zihao Wang;Haijun Yu;Song Ni;Haixia Xie;Qiegen Liu;Fenglin Liu;Shaoyu Wang
{"title":"Score-Based Generative Model With Conditional Null-Space Learning for Limited-Angle Tomographic Reconstruction in Medical Imaging","authors":"Genyuan Zhang;Zihao Wang;Haijun Yu;Song Ni;Haixia Xie;Qiegen Liu;Fenglin Liu;Shaoyu Wang","doi":"10.1109/TCI.2025.3562059","DOIUrl":null,"url":null,"abstract":"Limited-angle computed tomography (LA-CT) reconstruction represents a typically ill-posed inverse problem, frequently resulting in reconstructions with noticeable edge divergence and missing features. Score-based generative models (SGMs) based reconstruction methods have shown strong ability to reconstruct high-fidelity images for LA-CT. Data consistency is crucial for generating reliable and high-quality results in SGMs-based reconstruction methods. However, existing deep reconstruction methods have not fully explored data consistency, resulting in suboptimal performance. Based on this, we proposed a Conditional Score-based Null-space (CSN) generative model for LA-CT reconstruction. First, CSN integrates prior physical information of limited-angle scanning as conditional constraint, which can enable SGMs to obtain more accurate generation. Second, in order to balance the consistency and realness of the reconstruction results, the range-null space decomposition strategy is introduced in the sampling process. This strategy ensures that the estimation of the information occurs only in the null-space. Finally, we employ the sparse least square (LSQR) instead of commonly used consistency terms such as simultaneous iterative reconstruction technique (SIRT), thereby achieving superior reconstruction results. In addition, a mathematical convergence analysis of our CSN method is provided. Experimental evaluations on both numerical simulations and real-world datasets demonstrate that the proposed method offers notable advantages in reconstruction quality.","PeriodicalId":56022,"journal":{"name":"IEEE Transactions on Computational Imaging","volume":"11 ","pages":"556-569"},"PeriodicalIF":4.2000,"publicationDate":"2025-04-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Computational Imaging","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10967493/","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
Limited-angle computed tomography (LA-CT) reconstruction represents a typically ill-posed inverse problem, frequently resulting in reconstructions with noticeable edge divergence and missing features. Score-based generative models (SGMs) based reconstruction methods have shown strong ability to reconstruct high-fidelity images for LA-CT. Data consistency is crucial for generating reliable and high-quality results in SGMs-based reconstruction methods. However, existing deep reconstruction methods have not fully explored data consistency, resulting in suboptimal performance. Based on this, we proposed a Conditional Score-based Null-space (CSN) generative model for LA-CT reconstruction. First, CSN integrates prior physical information of limited-angle scanning as conditional constraint, which can enable SGMs to obtain more accurate generation. Second, in order to balance the consistency and realness of the reconstruction results, the range-null space decomposition strategy is introduced in the sampling process. This strategy ensures that the estimation of the information occurs only in the null-space. Finally, we employ the sparse least square (LSQR) instead of commonly used consistency terms such as simultaneous iterative reconstruction technique (SIRT), thereby achieving superior reconstruction results. In addition, a mathematical convergence analysis of our CSN method is provided. Experimental evaluations on both numerical simulations and real-world datasets demonstrate that the proposed method offers notable advantages in reconstruction quality.
期刊介绍:
The IEEE Transactions on Computational Imaging will publish articles where computation plays an integral role in the image formation process. Papers will cover all areas of computational imaging ranging from fundamental theoretical methods to the latest innovative computational imaging system designs. Topics of interest will include advanced algorithms and mathematical techniques, model-based data inversion, methods for image and signal recovery from sparse and incomplete data, techniques for non-traditional sensing of image data, methods for dynamic information acquisition and extraction from imaging sensors, software and hardware for efficient computation in imaging systems, and highly novel imaging system design.