Mingxiong Zhao;Zirui Wang;Kun Guo;Rongqian Zhang;Tony Q. S. Quek
{"title":"Against Mobile Collusive Eavesdroppers: Cooperative Secure Transmission and Computation in UAV-Assisted MEC Networks","authors":"Mingxiong Zhao;Zirui Wang;Kun Guo;Rongqian Zhang;Tony Q. S. Quek","doi":"10.1109/TMC.2025.3529929","DOIUrl":null,"url":null,"abstract":"In Uncrewed Aerial Vehicle (UAV)-assisted Mobile Edge Computing (MEC) networks, the security of transmission faces significant challenges due to the vulnerabilities of line-of-sight links and potential eavesdropping on two-hop links. This paper addresses these challenges with an innovative Cooperative Secure Transmission and Computation strategy (CSTC), specifically engineered for time-slotted UAV-assisted MEC networks plagued by mobile collusive eavesdroppers. These eavesdroppers significantly bolster their interception capabilities through coordinated and optimized movements, escalating the security threats. To neutralize these risks, the proposed CSTC employs the UAV and remote devices as helper nodes to emit jamming signals, thereby thwarting eavesdropping activities, while simultaneously facilitating the efficient relay of users’ tasks to the base station for advanced processing. The CSTC aims to maximize the sum Secrecy Transmission Rate (STR) satisfying task latency constraints. It involves a joint optimization of UAV trajectory, jamming beamformers, transmit power, and data offloading strategy to expedite task transmission. Additionally, a real-time computation scheduling approach is developed based on a newly defined metric, the Urgency Degree of Users (UDoU), to enhance task processing efficiency. Our extensive simulations validate that the CSTC not only elevates the sum STR but also consistently meets latency constraints, demonstrating its robustness against advanced mobile eavesdropping techniques.","PeriodicalId":50389,"journal":{"name":"IEEE Transactions on Mobile Computing","volume":"24 6","pages":"5280-5297"},"PeriodicalIF":7.7000,"publicationDate":"2025-01-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Mobile Computing","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10842471/","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0
Abstract
In Uncrewed Aerial Vehicle (UAV)-assisted Mobile Edge Computing (MEC) networks, the security of transmission faces significant challenges due to the vulnerabilities of line-of-sight links and potential eavesdropping on two-hop links. This paper addresses these challenges with an innovative Cooperative Secure Transmission and Computation strategy (CSTC), specifically engineered for time-slotted UAV-assisted MEC networks plagued by mobile collusive eavesdroppers. These eavesdroppers significantly bolster their interception capabilities through coordinated and optimized movements, escalating the security threats. To neutralize these risks, the proposed CSTC employs the UAV and remote devices as helper nodes to emit jamming signals, thereby thwarting eavesdropping activities, while simultaneously facilitating the efficient relay of users’ tasks to the base station for advanced processing. The CSTC aims to maximize the sum Secrecy Transmission Rate (STR) satisfying task latency constraints. It involves a joint optimization of UAV trajectory, jamming beamformers, transmit power, and data offloading strategy to expedite task transmission. Additionally, a real-time computation scheduling approach is developed based on a newly defined metric, the Urgency Degree of Users (UDoU), to enhance task processing efficiency. Our extensive simulations validate that the CSTC not only elevates the sum STR but also consistently meets latency constraints, demonstrating its robustness against advanced mobile eavesdropping techniques.
期刊介绍:
IEEE Transactions on Mobile Computing addresses key technical issues related to various aspects of mobile computing. This includes (a) architectures, (b) support services, (c) algorithm/protocol design and analysis, (d) mobile environments, (e) mobile communication systems, (f) applications, and (g) emerging technologies. Topics of interest span a wide range, covering aspects like mobile networks and hosts, mobility management, multimedia, operating system support, power management, online and mobile environments, security, scalability, reliability, and emerging technologies such as wearable computers, body area networks, and wireless sensor networks. The journal serves as a comprehensive platform for advancements in mobile computing research.