{"title":"Universal Speaker Embedding Free Target Speaker Extraction and Personal Voice Activity Detection","authors":"Bang Zeng, Ming Li","doi":"10.1016/j.csl.2025.101807","DOIUrl":null,"url":null,"abstract":"<div><div>Determining “who spoke what and when” remains challenging in real-world applications. In typical scenarios, Speaker Diarization (SD) is employed to address the problem of “who spoke when”, while Target Speaker Extraction (TSE) or Target Speaker Automatic Speech Recognition (TSASR) techniques are utilized to resolve the issue of “who spoke what”. Although some works have achieved promising results by combining SD and TSE systems, inconsistencies remain between SD and TSE regarding both output inconsistency and scenario mismatch. To address these limitations, we propose a Universal Speaker Embedding Free Target Speaker Extraction and Personal Voice Activity Detection (USEF-TP) model that jointly performs TSE and Personal Voice Activity Detection (PVAD). USEF-TP leverages frame-level features obtained through a cross-attention mechanism as speaker-related features instead of using speaker embeddings as in traditional approaches. Additionally, a multi-task learning algorithm with a scenario-aware differentiated loss function is applied to ensure robust performance across various levels of speaker overlap. The experimental results show that our proposed USEF-TP model achieves superior performance in TSE and PVAD tasks on the LibriMix and SparseLibriMix datasets. The results on the CALLHOME dataset demonstrate the competitive performance of our model on real recordings.</div></div>","PeriodicalId":50638,"journal":{"name":"Computer Speech and Language","volume":"94 ","pages":"Article 101807"},"PeriodicalIF":3.1000,"publicationDate":"2025-05-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computer Speech and Language","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0885230825000324","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0
Abstract
Determining “who spoke what and when” remains challenging in real-world applications. In typical scenarios, Speaker Diarization (SD) is employed to address the problem of “who spoke when”, while Target Speaker Extraction (TSE) or Target Speaker Automatic Speech Recognition (TSASR) techniques are utilized to resolve the issue of “who spoke what”. Although some works have achieved promising results by combining SD and TSE systems, inconsistencies remain between SD and TSE regarding both output inconsistency and scenario mismatch. To address these limitations, we propose a Universal Speaker Embedding Free Target Speaker Extraction and Personal Voice Activity Detection (USEF-TP) model that jointly performs TSE and Personal Voice Activity Detection (PVAD). USEF-TP leverages frame-level features obtained through a cross-attention mechanism as speaker-related features instead of using speaker embeddings as in traditional approaches. Additionally, a multi-task learning algorithm with a scenario-aware differentiated loss function is applied to ensure robust performance across various levels of speaker overlap. The experimental results show that our proposed USEF-TP model achieves superior performance in TSE and PVAD tasks on the LibriMix and SparseLibriMix datasets. The results on the CALLHOME dataset demonstrate the competitive performance of our model on real recordings.
期刊介绍:
Computer Speech & Language publishes reports of original research related to the recognition, understanding, production, coding and mining of speech and language.
The speech and language sciences have a long history, but it is only relatively recently that large-scale implementation of and experimentation with complex models of speech and language processing has become feasible. Such research is often carried out somewhat separately by practitioners of artificial intelligence, computer science, electronic engineering, information retrieval, linguistics, phonetics, or psychology.