Improved crystal graph networks with periodic invariance from a global perspective

IF 3.1 3区 材料科学 Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY
Zhihui Wang , Chengyu Fu , Chuchu Xu , Huaijuan Zang , Jing Fang , Yongsheng Ren , Shu Zhan
{"title":"Improved crystal graph networks with periodic invariance from a global perspective","authors":"Zhihui Wang ,&nbsp;Chengyu Fu ,&nbsp;Chuchu Xu ,&nbsp;Huaijuan Zang ,&nbsp;Jing Fang ,&nbsp;Yongsheng Ren ,&nbsp;Shu Zhan","doi":"10.1016/j.commatsci.2025.113951","DOIUrl":null,"url":null,"abstract":"<div><div>In recent decades, the swift progress of machine learning has significantly propelled the advancement of crystal material property prediction and generation. Graph Neural Networks (GNN), as a key tool in AI for Science research, play a crucial role in processing data from various scientific problems. However, most existing GNN models focus on improving the accuracy of crystal material property predictions by exploring the crystal’s geometric structure and altering deep learning model approaches, while neglecting the ratio information of elemental composition, which represents the global information of the crystal. In this study, we propose a new model for crystal material property prediction, Gformer. Gformer combines periodic pattern encoding with self-connecting edges, graph attention convolution, and a global feature extraction and processing module. This allows it to capture repeated patterns in the crystal structure and the macroscopic effects of elemental composition on material properties. The model was trained and evaluated using the JARVIS-DFT and Materials Project databases. The results demonstrate that Gformer achieves outstanding performance in six crystal property prediction tasks. Our code is publicly available at <span><span>https://github.com/wwzhui/Gformer</span><svg><path></path></svg></span>.</div></div>","PeriodicalId":10650,"journal":{"name":"Computational Materials Science","volume":"256 ","pages":"Article 113951"},"PeriodicalIF":3.1000,"publicationDate":"2025-05-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computational Materials Science","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0927025625002940","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

In recent decades, the swift progress of machine learning has significantly propelled the advancement of crystal material property prediction and generation. Graph Neural Networks (GNN), as a key tool in AI for Science research, play a crucial role in processing data from various scientific problems. However, most existing GNN models focus on improving the accuracy of crystal material property predictions by exploring the crystal’s geometric structure and altering deep learning model approaches, while neglecting the ratio information of elemental composition, which represents the global information of the crystal. In this study, we propose a new model for crystal material property prediction, Gformer. Gformer combines periodic pattern encoding with self-connecting edges, graph attention convolution, and a global feature extraction and processing module. This allows it to capture repeated patterns in the crystal structure and the macroscopic effects of elemental composition on material properties. The model was trained and evaluated using the JARVIS-DFT and Materials Project databases. The results demonstrate that Gformer achieves outstanding performance in six crystal property prediction tasks. Our code is publicly available at https://github.com/wwzhui/Gformer.

Abstract Image

从全局角度改进具有周期不变性的晶体图网络
近几十年来,机器学习的迅速发展极大地推动了晶体材料性质预测和生成的进步。图神经网络(Graph Neural Networks, GNN)作为人工智能在科学研究中的关键工具,在处理各种科学问题的数据方面发挥着至关重要的作用。然而,现有的大多数GNN模型都侧重于通过探索晶体的几何结构和改变深度学习模型方法来提高晶体材料性质预测的准确性,而忽略了元素组成的比例信息,而元素组成的比例信息代表了晶体的全局信息。在这项研究中,我们提出了一种新的晶体材料性能预测模型Gformer。Gformer结合了周期性模式编码与自连接边,图注意卷积,和一个全局特征提取和处理模块。这使得它能够捕捉到晶体结构中的重复模式以及元素组成对材料特性的宏观影响。使用JARVIS-DFT和Materials Project数据库对模型进行训练和评估。结果表明,Gformer在六个晶体性质预测任务中取得了优异的性能。我们的代码可以在https://github.com/wwzhui/Gformer上公开获得。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Computational Materials Science
Computational Materials Science 工程技术-材料科学:综合
CiteScore
6.50
自引率
6.10%
发文量
665
审稿时长
26 days
期刊介绍: The goal of Computational Materials Science is to report on results that provide new or unique insights into, or significantly expand our understanding of, the properties of materials or phenomena associated with their design, synthesis, processing, characterization, and utilization. To be relevant to the journal, the results should be applied or applicable to specific material systems that are discussed within the submission.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信