Advanced thermal management of lithium-ion battery using fin-enhanced PCM: A CFD study

Md Ahnaf Adit, Md Mahamudul Hasan Pranto, Md. Golam Kibria
{"title":"Advanced thermal management of lithium-ion battery using fin-enhanced PCM: A CFD study","authors":"Md Ahnaf Adit,&nbsp;Md Mahamudul Hasan Pranto,&nbsp;Md. Golam Kibria","doi":"10.1016/j.fub.2025.100076","DOIUrl":null,"url":null,"abstract":"<div><div>The study investigates the thermal behavior of a lithium-ion battery, particularly 18650 LiFePO<sub>4</sub> cell, at different discharge rates through computational fluid dynamics (CFD) simulations. An advanced battery thermal management system (BTMS) utilizing phase change material (PCM) and hybrid nanocomposite PCM (HNPCM) was examined to reduce temperature elevation and improve thermal uniformity. HNPCMs exhibited enhanced thermal conductivity, increasing by 359.09 % compared to pure PCM; nevertheless, the somewhat diminished latent heat of melting constrained energy absorption. Simulations indicated the peak surface temperatures for fin-only designs as 315.3 K, 318 K, and 320.81 K; for PCM/fin configurations as 314.16 K, 316.36 K, and 318.64 K; and for HNPCM/fin configurations as 313.67 K, 315.52 K, and 317.4 K at 12 C, 16 C, and 20 C, respectively. Notwithstanding minimal melting during operation, the HNPCM/fin configuration exhibited the most efficient heat regulation. The findings indicate that the HNPCM/fin configuration consistently surpassed the PCM/fin and fin-only arrangements at all discharge rates. At discharge rates of 12 C, 16 C, and 20 C, maximum reductions in surface temperature of 6.64 %, 8.73 %, and 11 %, respectively, were attained in comparison to setup without a BTMS. This study highlights the promise of improved BTMS designs, especially those employing HNPCMs, in facilitating safer and more efficient operation of lithium-ion batteries. Subsequent research should concentrate on enhancing fin-and-housing configurations, integrating low-melting-point phase change materials, and investigating small, scalable battery thermal management system designs for electric vehicle applications.</div></div>","PeriodicalId":100560,"journal":{"name":"Future Batteries","volume":"6 ","pages":"Article 100076"},"PeriodicalIF":0.0000,"publicationDate":"2025-04-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Future Batteries","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2950264025000553","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The study investigates the thermal behavior of a lithium-ion battery, particularly 18650 LiFePO4 cell, at different discharge rates through computational fluid dynamics (CFD) simulations. An advanced battery thermal management system (BTMS) utilizing phase change material (PCM) and hybrid nanocomposite PCM (HNPCM) was examined to reduce temperature elevation and improve thermal uniformity. HNPCMs exhibited enhanced thermal conductivity, increasing by 359.09 % compared to pure PCM; nevertheless, the somewhat diminished latent heat of melting constrained energy absorption. Simulations indicated the peak surface temperatures for fin-only designs as 315.3 K, 318 K, and 320.81 K; for PCM/fin configurations as 314.16 K, 316.36 K, and 318.64 K; and for HNPCM/fin configurations as 313.67 K, 315.52 K, and 317.4 K at 12 C, 16 C, and 20 C, respectively. Notwithstanding minimal melting during operation, the HNPCM/fin configuration exhibited the most efficient heat regulation. The findings indicate that the HNPCM/fin configuration consistently surpassed the PCM/fin and fin-only arrangements at all discharge rates. At discharge rates of 12 C, 16 C, and 20 C, maximum reductions in surface temperature of 6.64 %, 8.73 %, and 11 %, respectively, were attained in comparison to setup without a BTMS. This study highlights the promise of improved BTMS designs, especially those employing HNPCMs, in facilitating safer and more efficient operation of lithium-ion batteries. Subsequent research should concentrate on enhancing fin-and-housing configurations, integrating low-melting-point phase change materials, and investigating small, scalable battery thermal management system designs for electric vehicle applications.
采用翅片增强型PCM的锂离子电池高级热管理:CFD研究
该研究通过计算流体动力学(CFD)模拟研究了锂离子电池,特别是18650 LiFePO4电池在不同放电速率下的热行为。采用相变材料(PCM)和混合纳米复合材料(HNPCM)设计了一种先进的电池热管理系统(BTMS),以降低温度升高,提高热均匀性。与纯PCM相比,hnpcm的导热系数提高了359.09 %;然而,熔化潜热的减少限制了能量的吸收。模拟结果表明,单鳍设计的峰值表面温度分别为315.3 K、318 K和320.81 K;为314.16 K、316.36 K和318.64 K;在12 C、16 C和20 C时,HNPCM/fin组态分别为313.67 K、315.52 K和317.4 K。尽管在运行过程中熔化最小,但HNPCM/鳍结构表现出最有效的热调节。结果表明,在所有流量下,HNPCM/鳍配置始终优于PCM/鳍和仅鳍配置。在12 C, 16 C和20 C的放电速率下,与没有BTMS的设置相比,表面温度分别降低了6.64 %,8.73 %和11 %。这项研究强调了改进BTMS设计的前景,特别是那些采用HNPCMs的设计,在促进锂离子电池更安全、更高效的运行方面。后续的研究应该集中在增强鳍和外壳结构,集成低熔点相变材料,以及研究小型、可扩展的电动汽车电池热管理系统设计。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信