Decoding risk sentiment in 10-K filings: Predictability for U.S. stock indices

IF 7.4 2区 经济学 Q1 BUSINESS, FINANCE
Nicolás Magner , Pablo A. Henríquez , Aliro Sanhueza
{"title":"Decoding risk sentiment in 10-K filings: Predictability for U.S. stock indices","authors":"Nicolás Magner ,&nbsp;Pablo A. Henríquez ,&nbsp;Aliro Sanhueza","doi":"10.1016/j.frl.2025.107472","DOIUrl":null,"url":null,"abstract":"<div><div>This study demonstrates that the tone of the risk factors section in the 10-K reports of U.S. public companies predicts returns on major U.S. stock indices. We created five tone indicators using text mining, the Loughran-McDonald dictionary, and AI-calibrated alternatives (GPT-3.5-turbo-0125, GPT-4, GPT-4o, and GPT-4o-mini). These indicators showed significant predictive power for weekly returns, with optimism correlated with higher returns. Tone measurements based on GPT-4 outperformed the others in terms of predictive accuracy. We analyzed the Loughran-McDonald dictionary’s utility and highlighted the underexplored risk factors section, offering novel insights into sentiment analysis and financial forecasting.</div></div>","PeriodicalId":12167,"journal":{"name":"Finance Research Letters","volume":"81 ","pages":"Article 107472"},"PeriodicalIF":7.4000,"publicationDate":"2025-05-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Finance Research Letters","FirstCategoryId":"96","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1544612325007317","RegionNum":2,"RegionCategory":"经济学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BUSINESS, FINANCE","Score":null,"Total":0}
引用次数: 0

Abstract

This study demonstrates that the tone of the risk factors section in the 10-K reports of U.S. public companies predicts returns on major U.S. stock indices. We created five tone indicators using text mining, the Loughran-McDonald dictionary, and AI-calibrated alternatives (GPT-3.5-turbo-0125, GPT-4, GPT-4o, and GPT-4o-mini). These indicators showed significant predictive power for weekly returns, with optimism correlated with higher returns. Tone measurements based on GPT-4 outperformed the others in terms of predictive accuracy. We analyzed the Loughran-McDonald dictionary’s utility and highlighted the underexplored risk factors section, offering novel insights into sentiment analysis and financial forecasting.
解读10-K文件中的风险情绪:美国股指的可预测性
本研究表明,美国上市公司10-K报告中风险因素部分的基调可以预测美国主要股指的回报。我们使用文本挖掘、Loughran-McDonald词典和人工智能校准的替代品(GPT-3.5-turbo-0125、GPT-4、gpt - 40和gpt - 40 -mini)创建了五个音调指标。这些指标对周收益具有显著的预测能力,乐观与高收益相关。基于GPT-4的音调测量在预测准确性方面优于其他方法。我们分析了Loughran-McDonald词典的实用性,并强调了未被开发的风险因素部分,为情绪分析和财务预测提供了新的见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Finance Research Letters
Finance Research Letters BUSINESS, FINANCE-
CiteScore
11.10
自引率
14.40%
发文量
863
期刊介绍: Finance Research Letters welcomes submissions across all areas of finance, aiming for rapid publication of significant new findings. The journal particularly encourages papers that provide insight into the replicability of established results, examine the cross-national applicability of previous findings, challenge existing methodologies, or demonstrate methodological contingencies. Papers are invited in the following areas: Actuarial studies Alternative investments Asset Pricing Bankruptcy and liquidation Banks and other Depository Institutions Behavioral and experimental finance Bibliometric and Scientometric studies of finance Capital budgeting and corporate investment Capital markets and accounting Capital structure and payout policy Commodities Contagion, crises and interdependence Corporate governance Credit and fixed income markets and instruments Derivatives Emerging markets Energy Finance and Energy Markets Financial Econometrics Financial History Financial intermediation and money markets Financial markets and marketplaces Financial Mathematics and Econophysics Financial Regulation and Law Forecasting Frontier market studies International Finance Market efficiency, event studies Mergers, acquisitions and the market for corporate control Micro Finance Institutions Microstructure Non-bank Financial Institutions Personal Finance Portfolio choice and investing Real estate finance and investing Risk SME, Family and Entrepreneurial Finance
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信