A three-in-one strategy enables improved kinetics in an LLZTO solid electrolyte for Li-CO2 batteries with high energy efficiency

IF 6.1 1区 化学 Q1 CHEMISTRY, INORGANIC & NUCLEAR
Zesen Gao, Shijie Yang, Yan Yang, Futing Sun, Tianshuo Zhang, Yunluo Wang, Tianrui Zhou, Lang Tao, Hucheng Song, Haijie Chen
{"title":"A three-in-one strategy enables improved kinetics in an LLZTO solid electrolyte for Li-CO2 batteries with high energy efficiency","authors":"Zesen Gao, Shijie Yang, Yan Yang, Futing Sun, Tianshuo Zhang, Yunluo Wang, Tianrui Zhou, Lang Tao, Hucheng Song, Haijie Chen","doi":"10.1039/d5qi00659g","DOIUrl":null,"url":null,"abstract":"Solid-state Li-CO<small><sub>2</sub></small> batteries possess unique merits, including high environmental friendliness, extremely high energy density, and wide operational temperature range. In this work, we used the garnet-type Li<small><sub>6.4</sub></small>La<small><sub>3</sub></small>Zr<small><sub>1.4</sub></small>Ta<small><sub>0.6</sub></small>O<small><sub>12</sub></small> (LLZTO) as the solid electrolyte for Li-CO<small><sub>2</sub></small> batteries. By a simple solid-state reaction under vacuum, LLZTO was tightly composited with organic materials. Detailed analysis confirms that a three-in-one effect was achieved, resulting in additional Li<small><sup>+</sup></small> migration pathways, improved mechanical properties of the electrolyte, and more active sites for Li<small><sub>2</sub></small>CO<small><sub>3</sub></small> decomposition. This contributes to accelerated Li<small><sup>+</sup></small> transport and fast CO<small><sub>2</sub></small> reaction kinetics. A solid-state Li-CO<small><sub>2</sub></small> cell was assembled using a Ru@C cathode and an integrated layer of LLZTO@PVDF interfaced with an artificial molten salt. An exceptionally low charging overpotential (below 3.0 V) was achieved, maintaining a charge potential retention rate of over 99%. This work introduces LLZTO as a promising electrolyte for solid-state Li-CO<small><sub>2</sub></small> batteries, shedding light on the advancement of next-generation Li-CO<small><sub>2</sub></small> battery technologies.","PeriodicalId":79,"journal":{"name":"Inorganic Chemistry Frontiers","volume":"11 1","pages":""},"PeriodicalIF":6.1000,"publicationDate":"2025-05-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Inorganic Chemistry Frontiers","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1039/d5qi00659g","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, INORGANIC & NUCLEAR","Score":null,"Total":0}
引用次数: 0

Abstract

Solid-state Li-CO2 batteries possess unique merits, including high environmental friendliness, extremely high energy density, and wide operational temperature range. In this work, we used the garnet-type Li6.4La3Zr1.4Ta0.6O12 (LLZTO) as the solid electrolyte for Li-CO2 batteries. By a simple solid-state reaction under vacuum, LLZTO was tightly composited with organic materials. Detailed analysis confirms that a three-in-one effect was achieved, resulting in additional Li+ migration pathways, improved mechanical properties of the electrolyte, and more active sites for Li2CO3 decomposition. This contributes to accelerated Li+ transport and fast CO2 reaction kinetics. A solid-state Li-CO2 cell was assembled using a Ru@C cathode and an integrated layer of LLZTO@PVDF interfaced with an artificial molten salt. An exceptionally low charging overpotential (below 3.0 V) was achieved, maintaining a charge potential retention rate of over 99%. This work introduces LLZTO as a promising electrolyte for solid-state Li-CO2 batteries, shedding light on the advancement of next-generation Li-CO2 battery technologies.

Abstract Image

一个三合一的策略可以改善动力学的LLZTO固体电解质的锂-二氧化碳电池具有高能效
固态Li-CO2电池具有环境友好性高、能量密度极高、工作温度范围宽等独特优点。本文采用石榴石型Li6.4La3Zr1.4Ta0.6O12 (LLZTO)作为Li-CO2电池的固体电解质。在真空条件下通过简单的固相反应,将LLZTO与有机材料紧密复合。详细分析证实,实现了三合一效应,从而增加了Li+迁移途径,改善了电解质的机械性能,并增加了Li2CO3分解的活性位点。这有助于加速Li+运输和快速CO2反应动力学。使用Ru@C阴极和LLZTO@PVDF集成层与人工熔盐界面组装固态Li-CO2电池。实现了极低的充电过电位(低于3.0 V),保持了99%以上的充电电位保留率。这项工作介绍了LLZTO作为一种有前途的固态Li-CO2电池电解质,为下一代Li-CO2电池技术的发展提供了线索。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Inorganic Chemistry Frontiers
Inorganic Chemistry Frontiers CHEMISTRY, INORGANIC & NUCLEAR-
CiteScore
10.40
自引率
7.10%
发文量
587
审稿时长
1.2 months
期刊介绍: The international, high quality journal for interdisciplinary research between inorganic chemistry and related subjects
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信