Alexandros Katsidas, Michaela Fecková, Filip Bureš, Sylvain Achelle and Mihalis Fakis
{"title":"The role of branching in the ultrafast dynamics and two-photon absorption of two pyrimidine push–pull molecules†","authors":"Alexandros Katsidas, Michaela Fecková, Filip Bureš, Sylvain Achelle and Mihalis Fakis","doi":"10.1039/D5CP00589B","DOIUrl":null,"url":null,"abstract":"<p >The dynamics and two-photon absorption (2PA) properties of two pyrimidine chromophores are studied using femtosecond time-resolved fluorescence and two-photon excited fluorescence techniques. The pyrimidine is used as an electron withdrawing group and is substituted at the C2 position with a phenylacridan fragment, while diphenylaministyryl donor moieties are appended at positions C4/6 to afford the pseudo-dipolar and pseudo-quadrupolar molecules <strong>1</strong> and <strong>2,</strong> respectively. Chromophore <strong>2</strong> shows more efficient fluorescence emission, while <strong>1</strong> exhibits larger Stokes shifts. Their decay pathways are discussed through an emission from a Franck–Condon charge transfer (FC-CT) and a relaxed charge transfer (R-CT) state. Ultrafast dynamics in tetrahydrofuran show population of the R-CT state for <strong>1</strong> that is faster than solvation, while for <strong>2</strong>, due to its pseudo-quadrupolar nature, R-CT population is slower and occurs from the solvated FC-CT state. Finally, molecule <strong>2</strong> shows better 2PA properties with cross sections reaching 560 GM at 820 nm.</p>","PeriodicalId":99,"journal":{"name":"Physical Chemistry Chemical Physics","volume":" 22","pages":" 11649-11658"},"PeriodicalIF":2.9000,"publicationDate":"2025-05-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.rsc.org/en/content/articlepdf/2025/cp/d5cp00589b?page=search","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physical Chemistry Chemical Physics","FirstCategoryId":"92","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2025/cp/d5cp00589b","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
The dynamics and two-photon absorption (2PA) properties of two pyrimidine chromophores are studied using femtosecond time-resolved fluorescence and two-photon excited fluorescence techniques. The pyrimidine is used as an electron withdrawing group and is substituted at the C2 position with a phenylacridan fragment, while diphenylaministyryl donor moieties are appended at positions C4/6 to afford the pseudo-dipolar and pseudo-quadrupolar molecules 1 and 2, respectively. Chromophore 2 shows more efficient fluorescence emission, while 1 exhibits larger Stokes shifts. Their decay pathways are discussed through an emission from a Franck–Condon charge transfer (FC-CT) and a relaxed charge transfer (R-CT) state. Ultrafast dynamics in tetrahydrofuran show population of the R-CT state for 1 that is faster than solvation, while for 2, due to its pseudo-quadrupolar nature, R-CT population is slower and occurs from the solvated FC-CT state. Finally, molecule 2 shows better 2PA properties with cross sections reaching 560 GM at 820 nm.
期刊介绍:
Physical Chemistry Chemical Physics (PCCP) is an international journal co-owned by 19 physical chemistry and physics societies from around the world. This journal publishes original, cutting-edge research in physical chemistry, chemical physics and biophysical chemistry. To be suitable for publication in PCCP, articles must include significant innovation and/or insight into physical chemistry; this is the most important criterion that reviewers and Editors will judge against when evaluating submissions.
The journal has a broad scope and welcomes contributions spanning experiment, theory, computation and data science. Topical coverage includes spectroscopy, dynamics, kinetics, statistical mechanics, thermodynamics, electrochemistry, catalysis, surface science, quantum mechanics, quantum computing and machine learning. Interdisciplinary research areas such as polymers and soft matter, materials, nanoscience, energy, surfaces/interfaces, and biophysical chemistry are welcomed if they demonstrate significant innovation and/or insight into physical chemistry. Joined experimental/theoretical studies are particularly appreciated when complementary and based on up-to-date approaches.