Human-machine co-adaptation to automated insulin delivery: a randomised clinical trial using digital twin technology.

IF 12.4 1区 医学 Q1 HEALTH CARE SCIENCES & SERVICES
Boris P Kovatchev,Patricio Colmegna,Jacopo Pavan,Jenny L Diaz Castañeda,Maria F Villa-Tamayo,Chaitanya L K Koravi,Giulio Santini,Carlene Alix,Meaghan Stumpf,Sue A Brown
{"title":"Human-machine co-adaptation to automated insulin delivery: a randomised clinical trial using digital twin technology.","authors":"Boris P Kovatchev,Patricio Colmegna,Jacopo Pavan,Jenny L Diaz Castañeda,Maria F Villa-Tamayo,Chaitanya L K Koravi,Giulio Santini,Carlene Alix,Meaghan Stumpf,Sue A Brown","doi":"10.1038/s41746-025-01679-y","DOIUrl":null,"url":null,"abstract":"Most automated insulin delivery (AID) algorithms do not adapt to the changing physiology of their users, and none provide interactive means for user adaptation to the actions of AID. This randomised clinical trial tested human-machine co-adaptation to AID using new 'digital twin' replay simulation technology. Seventy-two individuals with T1D completed the 6-month study. The two study arms differed by the order of administration of information feedback (widely used metrics and graphs) and in silico co-adaptation routine, which: (i) transmitted AID data to a cloud application; (ii) mapped each person to their digital twin; (iii) optimized AID control parameters bi-weekly, and (iv) enabled users to experiment with what-if scenarios replayed via their own digital twins. In silico co-adaptation improved the primary outcome, time-in-range (3.9-10 mmol/L), from 72 to 77 percent (p < 0.01) and reduced glycated haemoglobin from 6.8 to 6.6 percent. Information feedback did not have additional effect to AID alone. (Clinical Trials Registration: NCT05610111 (November 10, 2022)).","PeriodicalId":19349,"journal":{"name":"NPJ Digital Medicine","volume":"35 1","pages":"253"},"PeriodicalIF":12.4000,"publicationDate":"2025-05-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"NPJ Digital Medicine","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1038/s41746-025-01679-y","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"HEALTH CARE SCIENCES & SERVICES","Score":null,"Total":0}
引用次数: 0

Abstract

Most automated insulin delivery (AID) algorithms do not adapt to the changing physiology of their users, and none provide interactive means for user adaptation to the actions of AID. This randomised clinical trial tested human-machine co-adaptation to AID using new 'digital twin' replay simulation technology. Seventy-two individuals with T1D completed the 6-month study. The two study arms differed by the order of administration of information feedback (widely used metrics and graphs) and in silico co-adaptation routine, which: (i) transmitted AID data to a cloud application; (ii) mapped each person to their digital twin; (iii) optimized AID control parameters bi-weekly, and (iv) enabled users to experiment with what-if scenarios replayed via their own digital twins. In silico co-adaptation improved the primary outcome, time-in-range (3.9-10 mmol/L), from 72 to 77 percent (p < 0.01) and reduced glycated haemoglobin from 6.8 to 6.6 percent. Information feedback did not have additional effect to AID alone. (Clinical Trials Registration: NCT05610111 (November 10, 2022)).
人机共同适应自动胰岛素输送:使用数字孪生技术的随机临床试验。
大多数自动胰岛素输送(AID)算法不能适应用户不断变化的生理,也没有一种算法为用户适应AID的动作提供交互手段。这项随机临床试验使用新的“数字双胞胎”回放模拟技术测试了人机对AID的共同适应。72名T1D患者完成了为期6个月的研究。这两个研究部门的不同之处在于信息反馈(广泛使用的指标和图表)和计算机协同适应程序的管理顺序,其中:(i)将AID数据传输到云应用程序;(ii)将每个人映射到他们的数字孪生;(iii)每两周一次优化AID控制参数,以及(iv)使用户能够通过他们自己的数字孪生体重复播放假设场景进行实验。硅片共适应改善了主要结果,范围内时间(3.9-10 mmol/L)从72%提高到77% (p < 0.01),并将糖化血红蛋白从6.8%降低到6.6%。信息反馈对援助本身没有额外的影响。(临床试验注册:NCT05610111(2022年11月10日))。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
25.10
自引率
3.30%
发文量
170
审稿时长
15 weeks
期刊介绍: npj Digital Medicine is an online open-access journal that focuses on publishing peer-reviewed research in the field of digital medicine. The journal covers various aspects of digital medicine, including the application and implementation of digital and mobile technologies in clinical settings, virtual healthcare, and the use of artificial intelligence and informatics. The primary goal of the journal is to support innovation and the advancement of healthcare through the integration of new digital and mobile technologies. When determining if a manuscript is suitable for publication, the journal considers four important criteria: novelty, clinical relevance, scientific rigor, and digital innovation.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信