Jack Badman, Antonietta Parracino, Rajnish Kumar, Simone Tambaro
{"title":"Insights into the intramembrane protease SPPL2b and its substrates: Functions and disease implications","authors":"Jack Badman, Antonietta Parracino, Rajnish Kumar, Simone Tambaro","doi":"10.1126/scisignal.adt2272","DOIUrl":null,"url":null,"abstract":"<div >Specialized intramembrane proteases, known as iCLiPs, regulate the processing of transmembrane proteins by releasing intracellular domains, which can function as transcriptional regulators. The signal peptide peptidase–like (SPPL) family of iCLiPs, particularly SPPL2b, has roles in immune regulation, neuronal function, and disease pathogenesis. In the brain, SPPL2b localizes mainly in the plasma membrane of neurons and microglia and is abundant in the cortex and hippocampus. Its known substrates regulate neuronal growth, inflammation, and synaptic function, and increased amounts of SPPL2b have been found in postmortem brain tissue from patients with Alzheimer’s disease. In this review, we discuss the currently known roles of SPPL2b, its substrates, and its disease implications. Understanding the downstream effects of SPPL2b-cleaved substrates will provide clearer insights into the impact of SPPL2b on cellular homeostasis and disease, potentially leading to new therapeutic strategies.</div>","PeriodicalId":21658,"journal":{"name":"Science Signaling","volume":"18 885","pages":""},"PeriodicalIF":6.6000,"publicationDate":"2025-05-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Science Signaling","FirstCategoryId":"99","ListUrlMain":"https://www.science.org/doi/10.1126/scisignal.adt2272","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Specialized intramembrane proteases, known as iCLiPs, regulate the processing of transmembrane proteins by releasing intracellular domains, which can function as transcriptional regulators. The signal peptide peptidase–like (SPPL) family of iCLiPs, particularly SPPL2b, has roles in immune regulation, neuronal function, and disease pathogenesis. In the brain, SPPL2b localizes mainly in the plasma membrane of neurons and microglia and is abundant in the cortex and hippocampus. Its known substrates regulate neuronal growth, inflammation, and synaptic function, and increased amounts of SPPL2b have been found in postmortem brain tissue from patients with Alzheimer’s disease. In this review, we discuss the currently known roles of SPPL2b, its substrates, and its disease implications. Understanding the downstream effects of SPPL2b-cleaved substrates will provide clearer insights into the impact of SPPL2b on cellular homeostasis and disease, potentially leading to new therapeutic strategies.
期刊介绍:
"Science Signaling" is a reputable, peer-reviewed journal dedicated to the exploration of cell communication mechanisms, offering a comprehensive view of the intricate processes that govern cellular regulation. This journal, published weekly online by the American Association for the Advancement of Science (AAAS), is a go-to resource for the latest research in cell signaling and its various facets.
The journal's scope encompasses a broad range of topics, including the study of signaling networks, synthetic biology, systems biology, and the application of these findings in drug discovery. It also delves into the computational and modeling aspects of regulatory pathways, providing insights into how cells communicate and respond to their environment.
In addition to publishing full-length articles that report on groundbreaking research, "Science Signaling" also features reviews that synthesize current knowledge in the field, focus articles that highlight specific areas of interest, and editor-written highlights that draw attention to particularly significant studies. This mix of content ensures that the journal serves as a valuable resource for both researchers and professionals looking to stay abreast of the latest advancements in cell communication science.