ℒ asso ℳ 𝒫 𝒞 -Based ℒ 1 Adaptive Control for Uncertain Euler–Lagrange Systems: Guaranteed Stability Robustness and Performance

IF 3.9 4区 计算机科学 Q2 AUTOMATION & CONTROL SYSTEMS
Hossein Ahmadian, Heidar Ali Talebi, Iman Sharifi
{"title":"ℒ\n asso \n \n ℳ\n 𝒫\n 𝒞\n -Based \n \n \n \n ℒ\n \n \n 1\n \n \n Adaptive Control for Uncertain Euler–Lagrange Systems: Guaranteed Stability Robustness and Performance","authors":"Hossein Ahmadian,&nbsp;Heidar Ali Talebi,&nbsp;Iman Sharifi","doi":"10.1002/acs.3957","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>The challenge of assessing system states and considering the robot's physical limitations impedes the development of an <span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mrow>\n <mi>ℒ</mi>\n </mrow>\n <mrow>\n <mn>1</mn>\n </mrow>\n </msub>\n </mrow>\n <annotation>$$ {\\mathcal{L}}_1 $$</annotation>\n </semantics></math> adaptive controller for robotic systems. To solve this challenge, this study proposes an <span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mrow>\n <mi>ℒ</mi>\n </mrow>\n <mrow>\n <mn>1</mn>\n </mrow>\n </msub>\n </mrow>\n <annotation>$$ {\\mathcal{L}}_1 $$</annotation>\n </semantics></math> adaptive controller based on <i>ℒ</i>asso <span></span><math>\n <mrow>\n <mi>ℳ</mi>\n <mi>𝒫</mi>\n <mi>𝒞</mi>\n </mrow></math> (<span></span><math>\n <mrow>\n <msub>\n <mrow>\n <mi>ℒ</mi>\n </mrow>\n <mrow>\n <mn>1</mn>\n </mrow>\n </msub>\n <mi>A</mi>\n <mi>ℒ</mi>\n <mi>ℳ</mi>\n <mi>𝒫</mi>\n <mi>𝒞</mi>\n </mrow></math>) (for <i>Euler–Lagrange systems</i>) that combines the method by a <i>Barrier Lyapunov Function</i>(<span></span><math>\n <semantics>\n <mrow>\n <mi>ℬ</mi>\n <mi>ℒ</mi>\n <mi>ℱ</mi>\n </mrow>\n <annotation>$$ \\mathit{\\mathcal{BLF}} $$</annotation>\n </semantics></math>) and an <i>adaptive high-gain observer</i> (<span></span><math>\n <mrow>\n <mi>𝒜</mi>\n <mi>ℋ</mi>\n <mi>𝒢</mi>\n <mi>𝒪</mi>\n </mrow></math>). In the face of uncertainty, time delay, and inaccessibility of system states, the presented approach establishes a mechanism to compromise between <i>fast adaptation</i> and <i>robustness</i>. The <span></span><math>\n <semantics>\n <mrow>\n <mi>ℬ</mi>\n <mi>ℒ</mi>\n <mi>ℱ</mi>\n </mrow>\n <annotation>$$ \\mathit{\\mathcal{BLF}} $$</annotation>\n </semantics></math> constrains the system's outputs and adjusts the observer gain to ensure the output estimation error stays within a predetermined range. Then, to increase the prediction accuracy, <i>ℒ</i>asso <span></span><math>\n <mrow>\n <mi>ℳ</mi>\n <mi>𝒫</mi>\n <mi>𝒞</mi>\n </mrow></math> (<span></span><math>\n <mrow>\n <mi>ℒ</mi>\n <mi>ℳ</mi>\n <mi>𝒫</mi>\n <mi>𝒞</mi>\n </mrow></math>) uses the estimated system parameter (obtained by <span></span><math>\n <mrow>\n <mi>𝒜</mi>\n <mi>ℋ</mi>\n <mi>𝒢</mi>\n <mi>𝒪</mi>\n </mrow></math>). To manage additive and parametric uncertainties, the proposed approach adds a robustness constraint to the <span></span><math>\n <mrow>\n <mi>ℒ</mi>\n <mi>ℳ</mi>\n <mi>𝒫</mi>\n <mi>𝒞</mi>\n </mrow></math> optimization. Subsequently, the effectiveness of the proposed method is assessed using an uncertain six-degrees-of-freedom (6-<i>𝒟𝒪ℱ</i>) remotely operated underwater vehicle (ℛ𝒪𝒱), and the stability of the closed-loop system under input delay is evaluated. The extensive numerical results demonstrate that the system with the proposed controller achieves superior performance compared to other adaptive controllers, particularly in terms of integral absolute tracking and estimation errors for this specific application. Furthermore, the results validate the proposed approach's ability to reject uncertainties and disturbances that fluctuate over time, and they exhibit a satisfactory tracking performance even in cases where the system dynamics are uncertain.</p>\n </div>","PeriodicalId":50347,"journal":{"name":"International Journal of Adaptive Control and Signal Processing","volume":"39 5","pages":"842-861"},"PeriodicalIF":3.9000,"publicationDate":"2025-02-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Adaptive Control and Signal Processing","FirstCategoryId":"94","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/acs.3957","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
引用次数: 0

Abstract

The challenge of assessing system states and considering the robot's physical limitations impedes the development of an 1 $$ {\mathcal{L}}_1 $$ adaptive controller for robotic systems. To solve this challenge, this study proposes an 1 $$ {\mathcal{L}}_1 $$ adaptive controller based on asso 𝒫 𝒞 ( 1 A 𝒫 𝒞 ) (for Euler–Lagrange systems) that combines the method by a Barrier Lyapunov Function( $$ \mathit{\mathcal{BLF}} $$ ) and an adaptive high-gain observer ( 𝒜 𝒢 𝒪 ). In the face of uncertainty, time delay, and inaccessibility of system states, the presented approach establishes a mechanism to compromise between fast adaptation and robustness. The $$ \mathit{\mathcal{BLF}} $$ constrains the system's outputs and adjusts the observer gain to ensure the output estimation error stays within a predetermined range. Then, to increase the prediction accuracy, asso 𝒫 𝒞 ( 𝒫 𝒞 ) uses the estimated system parameter (obtained by 𝒜 𝒢 𝒪 ). To manage additive and parametric uncertainties, the proposed approach adds a robustness constraint to the 𝒫 𝒞 optimization. Subsequently, the effectiveness of the proposed method is assessed using an uncertain six-degrees-of-freedom (6-𝒟𝒪ℱ) remotely operated underwater vehicle (ℛ𝒪𝒱), and the stability of the closed-loop system under input delay is evaluated. The extensive numerical results demonstrate that the system with the proposed controller achieves superior performance compared to other adaptive controllers, particularly in terms of integral absolute tracking and estimation errors for this specific application. Furthermore, the results validate the proposed approach's ability to reject uncertainties and disturbances that fluctuate over time, and they exhibit a satisfactory tracking performance even in cases where the system dynamics are uncertain.

不确定Euler-Lagrange系统的自适应控制:保证稳定性、鲁棒性和性能
评估系统状态和考虑机器人的物理限制的挑战阻碍了一个__1的发展 $$ {\mathcal{L}}_1 $$ 机器人系统的自适应控制器。为了解决这一挑战,本研究提出了一个__1 $$ {\mathcal{L}}_1 $$ 结合势垒李雅普诺夫函数(Lyapunov Function)的自适应控制器(适用于Euler-Lagrange系统)_ _ $$ \mathit{\mathcal{BLF}} $$ )和自适应高增益观测器(𝒢态)。面对系统状态的不确定性、时滞和不可访问性,该方法在快速适应和鲁棒性之间建立了一种折衷机制。[au:] $$ \mathit{\mathcal{BLF}} $$ 约束系统输出并调整观测器增益以确保输出估计误差保持在预定范围内。然后,为了提高预测精度,使用估计的系统参数(由 h / h /𝒢)来实现。为了管理可加性和参数的不确定性,该方法在优化过程中增加了一个鲁棒性约束。随后,以不确定六自由度(6-)遥控潜水器()为例,对所提方法的有效性进行了评估,并对输入时滞下闭环系统的稳定性进行了评估。大量的数值结果表明,与其他自适应控制器相比,该控制器的系统具有优越的性能,特别是在特定应用的积分绝对跟踪和估计误差方面。此外,结果验证了所提出的方法能够拒绝随时间波动的不确定性和干扰,并且即使在系统动力学不确定的情况下,它们也表现出令人满意的跟踪性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
5.30
自引率
16.10%
发文量
163
审稿时长
5 months
期刊介绍: The International Journal of Adaptive Control and Signal Processing is concerned with the design, synthesis and application of estimators or controllers where adaptive features are needed to cope with uncertainties.Papers on signal processing should also have some relevance to adaptive systems. The journal focus is on model based control design approaches rather than heuristic or rule based control design methods. All papers will be expected to include significant novel material. Both the theory and application of adaptive systems and system identification are areas of interest. Papers on applications can include problems in the implementation of algorithms for real time signal processing and control. The stability, convergence, robustness and numerical aspects of adaptive algorithms are also suitable topics. The related subjects of controller tuning, filtering, networks and switching theory are also of interest. Principal areas to be addressed include: Auto-Tuning, Self-Tuning and Model Reference Adaptive Controllers Nonlinear, Robust and Intelligent Adaptive Controllers Linear and Nonlinear Multivariable System Identification and Estimation Identification of Linear Parameter Varying, Distributed and Hybrid Systems Multiple Model Adaptive Control Adaptive Signal processing Theory and Algorithms Adaptation in Multi-Agent Systems Condition Monitoring Systems Fault Detection and Isolation Methods Fault Detection and Isolation Methods Fault-Tolerant Control (system supervision and diagnosis) Learning Systems and Adaptive Modelling Real Time Algorithms for Adaptive Signal Processing and Control Adaptive Signal Processing and Control Applications Adaptive Cloud Architectures and Networking Adaptive Mechanisms for Internet of Things Adaptive Sliding Mode Control.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信