DualBranch-FusionNet: A Hybrid CNN-Transformer Architecture for Cervical Cell Image Classification

IF 3 4区 计算机科学 Q2 ENGINEERING, ELECTRICAL & ELECTRONIC
Chuanyun Xu, Shuaiye Huang, Yang Zhang, Die Hu, Yisha Sun, Gang Li
{"title":"DualBranch-FusionNet: A Hybrid CNN-Transformer Architecture for Cervical Cell Image Classification","authors":"Chuanyun Xu,&nbsp;Shuaiye Huang,&nbsp;Yang Zhang,&nbsp;Die Hu,&nbsp;Yisha Sun,&nbsp;Gang Li","doi":"10.1002/ima.70101","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>Cervical cancer screening relies on accurate cell classification. Approaches based on Convolutional Neural Networks (CNNs) have proven effective in addressing the task. However, these approaches suffer from two main challenges. First, they may introduce bias into models due to variations in cell morphology and color. Second, they may struggle to capture broader contextual information as CNNs primarily focus on local pixel information. To address these issues, we present a novel hybrid model named DualBranch-FusionNet, which combines CNNs for local feature extraction with Transformers for capturing global contextual information to improve cervical cell classification accuracy. The proposed method adopts the three-fold ideas. First, concerning the CNN branch, it introduces Omni-dimensional Dynamic Convolution (ODConv) to adaptively extract detailed features across multiple dimensions and designs an Adaptive Channel Modulation (ACM) mechanism to dynamically emphasize critical feature channels. Second, regarding the Transformer branch, it designs a Dynamic Query-Aware Sparse Attention (DQSA) mechanism to effectively filter out less relevant key-value pairs over a larger receptive field, thereby reducing the interference of irrelevant information. Third, it adopts a fusion strategy, the Simple Fusion Module (SFM), to produce more comprehensive feature representations, leading to improved cervical cell classification accuracy. The proposed model was validated on two datasets: the Mendeley LBC and the Tianchi Cervical Cancer Risk Intelligent Diagnosis Challenge datasets, achieving Accuracies of 99.07% and 99.12%, respectively.</p>\n </div>","PeriodicalId":14027,"journal":{"name":"International Journal of Imaging Systems and Technology","volume":"35 3","pages":""},"PeriodicalIF":3.0000,"publicationDate":"2025-05-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Imaging Systems and Technology","FirstCategoryId":"94","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/ima.70101","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

Cervical cancer screening relies on accurate cell classification. Approaches based on Convolutional Neural Networks (CNNs) have proven effective in addressing the task. However, these approaches suffer from two main challenges. First, they may introduce bias into models due to variations in cell morphology and color. Second, they may struggle to capture broader contextual information as CNNs primarily focus on local pixel information. To address these issues, we present a novel hybrid model named DualBranch-FusionNet, which combines CNNs for local feature extraction with Transformers for capturing global contextual information to improve cervical cell classification accuracy. The proposed method adopts the three-fold ideas. First, concerning the CNN branch, it introduces Omni-dimensional Dynamic Convolution (ODConv) to adaptively extract detailed features across multiple dimensions and designs an Adaptive Channel Modulation (ACM) mechanism to dynamically emphasize critical feature channels. Second, regarding the Transformer branch, it designs a Dynamic Query-Aware Sparse Attention (DQSA) mechanism to effectively filter out less relevant key-value pairs over a larger receptive field, thereby reducing the interference of irrelevant information. Third, it adopts a fusion strategy, the Simple Fusion Module (SFM), to produce more comprehensive feature representations, leading to improved cervical cell classification accuracy. The proposed model was validated on two datasets: the Mendeley LBC and the Tianchi Cervical Cancer Risk Intelligent Diagnosis Challenge datasets, achieving Accuracies of 99.07% and 99.12%, respectively.

DualBranch-FusionNet:一种用于宫颈细胞图像分类的CNN-Transformer混合架构
子宫颈癌筛查依赖于准确的细胞分类。基于卷积神经网络(cnn)的方法已被证明在解决该任务方面是有效的。然而,这些方法面临两个主要挑战。首先,由于细胞形态和颜色的变化,它们可能会在模型中引入偏差。其次,它们可能难以捕获更广泛的上下文信息,因为cnn主要关注局部像素信息。为了解决这些问题,我们提出了一种名为DualBranch-FusionNet的新型混合模型,该模型将cnn用于局部特征提取和transformer用于捕获全局上下文信息相结合,以提高宫颈细胞分类的准确性。所提出的方法采用了三重思想。首先,在CNN分支中,引入全维动态卷积(ODConv)自适应提取多维细节特征,设计自适应信道调制(ACM)机制,动态强调关键特征通道。其次,关于Transformer分支,它设计了一个动态查询感知稀疏注意(Dynamic Query-Aware Sparse Attention, DQSA)机制,以便在更大的接受域上有效地过滤掉不太相关的键值对,从而减少不相关信息的干扰。第三,采用简单融合模块(Simple fusion Module, SFM)的融合策略,产生更全面的特征表示,提高了宫颈细胞分类的准确率。该模型在Mendeley LBC和天池宫颈癌风险智能诊断挑战数据集上进行了验证,准确率分别达到99.07%和99.12%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
International Journal of Imaging Systems and Technology
International Journal of Imaging Systems and Technology 工程技术-成像科学与照相技术
CiteScore
6.90
自引率
6.10%
发文量
138
审稿时长
3 months
期刊介绍: The International Journal of Imaging Systems and Technology (IMA) is a forum for the exchange of ideas and results relevant to imaging systems, including imaging physics and informatics. The journal covers all imaging modalities in humans and animals. IMA accepts technically sound and scientifically rigorous research in the interdisciplinary field of imaging, including relevant algorithmic research and hardware and software development, and their applications relevant to medical research. The journal provides a platform to publish original research in structural and functional imaging. The journal is also open to imaging studies of the human body and on animals that describe novel diagnostic imaging and analyses methods. Technical, theoretical, and clinical research in both normal and clinical populations is encouraged. Submissions describing methods, software, databases, replication studies as well as negative results are also considered. The scope of the journal includes, but is not limited to, the following in the context of biomedical research: Imaging and neuro-imaging modalities: structural MRI, functional MRI, PET, SPECT, CT, ultrasound, EEG, MEG, NIRS etc.; Neuromodulation and brain stimulation techniques such as TMS and tDCS; Software and hardware for imaging, especially related to human and animal health; Image segmentation in normal and clinical populations; Pattern analysis and classification using machine learning techniques; Computational modeling and analysis; Brain connectivity and connectomics; Systems-level characterization of brain function; Neural networks and neurorobotics; Computer vision, based on human/animal physiology; Brain-computer interface (BCI) technology; Big data, databasing and data mining.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信