Jan-Niklas Eckardt, Waldemar Hahn, Rhonda E. Ries, Szymon D. Chrost, Susann Winter, Sebastian Stasik, Christoph Röllig, Uwe Platzbecker, Carsten Müller-Tidow, Hubert Serve, Claudia D. Baldus, Christoph Schliemann, Kerstin Schäfer-Eckart, Maher Hanoun, Martin Kaufmann, Andreas Burchert, Johannes Schetelig, Martin Bornhäuser, Markus Wolfien, Soheil Meshinchi, Christian Thiede, Jan Moritz Middeke
{"title":"Age-stratified machine learning identifies divergent prognostic significance of molecular alterations in AML","authors":"Jan-Niklas Eckardt, Waldemar Hahn, Rhonda E. Ries, Szymon D. Chrost, Susann Winter, Sebastian Stasik, Christoph Röllig, Uwe Platzbecker, Carsten Müller-Tidow, Hubert Serve, Claudia D. Baldus, Christoph Schliemann, Kerstin Schäfer-Eckart, Maher Hanoun, Martin Kaufmann, Andreas Burchert, Johannes Schetelig, Martin Bornhäuser, Markus Wolfien, Soheil Meshinchi, Christian Thiede, Jan Moritz Middeke","doi":"10.1002/hem3.70132","DOIUrl":null,"url":null,"abstract":"<p>Risk stratification in acute myeloid leukemia (AML) is driven by genetics, yet patient age substantially influences therapeutic decisions. To evaluate how age alters the prognostic impact of genetic mutations, we pooled data from 3062 pediatric and adult AML patients from multiple cohorts. Signaling pathway mutations dominated in younger patients, while mutations in epigenetic regulators, spliceosome genes, and <i>TP53</i> alterations became more frequent with increasing age. Machine learning models were trained to identify prognostic variables and predict complete remission and 2-year overall survival, achieving area-under-the-curve scores of 0.801 and 0.791, respectively. Using Shapley (SHAP) values, we quantified the contribution of each variable to model decisions and traced their impact across six age groups: infants, children, adolescents/young adults, adults, seniors, and elderly. The highest contributions to model decisions among genetic variables were found for alterations of <i>NPM1</i>, <i>CEBPA</i>, inv(16), and t(8;21) conferring favorable risk and alterations of <i>TP53, RUNX1, ASXL1</i>, del(5q), -7, and -17 conferring adverse risk, while <i>FLT3</i>-ITD had an ambiguous role conferring favorable treatment responses yet poor overall survival. Age significantly modified the prognostic value of genetic alterations, with no single alteration consistently predicting outcomes across all age groups. Specific alterations associated with aging such as <i>TP53</i>, <i>ASXL1</i>, or del(5q) posed a disproportionately higher risk in younger patients. These results challenge uniform risk stratification models and highlight the need for context-sensitive AML treatment strategies.</p>","PeriodicalId":12982,"journal":{"name":"HemaSphere","volume":"9 5","pages":""},"PeriodicalIF":7.6000,"publicationDate":"2025-05-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/hem3.70132","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"HemaSphere","FirstCategoryId":"3","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/hem3.70132","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"HEMATOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Risk stratification in acute myeloid leukemia (AML) is driven by genetics, yet patient age substantially influences therapeutic decisions. To evaluate how age alters the prognostic impact of genetic mutations, we pooled data from 3062 pediatric and adult AML patients from multiple cohorts. Signaling pathway mutations dominated in younger patients, while mutations in epigenetic regulators, spliceosome genes, and TP53 alterations became more frequent with increasing age. Machine learning models were trained to identify prognostic variables and predict complete remission and 2-year overall survival, achieving area-under-the-curve scores of 0.801 and 0.791, respectively. Using Shapley (SHAP) values, we quantified the contribution of each variable to model decisions and traced their impact across six age groups: infants, children, adolescents/young adults, adults, seniors, and elderly. The highest contributions to model decisions among genetic variables were found for alterations of NPM1, CEBPA, inv(16), and t(8;21) conferring favorable risk and alterations of TP53, RUNX1, ASXL1, del(5q), -7, and -17 conferring adverse risk, while FLT3-ITD had an ambiguous role conferring favorable treatment responses yet poor overall survival. Age significantly modified the prognostic value of genetic alterations, with no single alteration consistently predicting outcomes across all age groups. Specific alterations associated with aging such as TP53, ASXL1, or del(5q) posed a disproportionately higher risk in younger patients. These results challenge uniform risk stratification models and highlight the need for context-sensitive AML treatment strategies.
期刊介绍:
HemaSphere, as a publication, is dedicated to disseminating the outcomes of profoundly pertinent basic, translational, and clinical research endeavors within the field of hematology. The journal actively seeks robust studies that unveil novel discoveries with significant ramifications for hematology.
In addition to original research, HemaSphere features review articles and guideline articles that furnish lucid synopses and discussions of emerging developments, along with recommendations for patient care.
Positioned as the foremost resource in hematology, HemaSphere augments its offerings with specialized sections like HemaTopics and HemaPolicy. These segments engender insightful dialogues covering a spectrum of hematology-related topics, including digestible summaries of pivotal articles, updates on new therapies, deliberations on European policy matters, and other noteworthy news items within the field. Steering the course of HemaSphere are Editor in Chief Jan Cools and Deputy Editor in Chief Claire Harrison, alongside the guidance of an esteemed Editorial Board comprising international luminaries in both research and clinical realms, each representing diverse areas of hematologic expertise.