{"title":"Understanding Surface/Interface-Induced Chemical and Physical Properties at Atomic Level by First Principles Investigations","authors":"Jingyu Yang, Jinbo Pan, Shixuan Du","doi":"10.1002/wcms.70030","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>The scientific trajectory in contemporary materials research has transitioned toward surface and interface engineering as critical determinants of functional performance, facilitating atomic-level precision in modulating physical and chemical properties for advanced applications spanning functional device architectures, catalytic systems, and electrochemical technologies. However, persistent challenges in atomic-scale characterization and the resource-intensive nature of empirical optimization necessitate systematic implementation of first-principles calculations to elucidate fundamental mechanisms underlying experimental observations and enable rational design of surface/interface modifications. This review examines three advancements in ab initio calculations for interfacial engineering: (1) revealing the mechanism of selective assembly and activation phenomena on surfaces, (2) theoretical predictions of interface engineering strategies, and (3) developing material databases with ionic/van der Waals components. We further address computational challenges while proposing quantum-mechanical methods to design next-gen materials with customized interfacial properties.</p>\n </div>","PeriodicalId":236,"journal":{"name":"Wiley Interdisciplinary Reviews: Computational Molecular Science","volume":"15 3","pages":""},"PeriodicalIF":16.8000,"publicationDate":"2025-05-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Wiley Interdisciplinary Reviews: Computational Molecular Science","FirstCategoryId":"92","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/wcms.70030","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
The scientific trajectory in contemporary materials research has transitioned toward surface and interface engineering as critical determinants of functional performance, facilitating atomic-level precision in modulating physical and chemical properties for advanced applications spanning functional device architectures, catalytic systems, and electrochemical technologies. However, persistent challenges in atomic-scale characterization and the resource-intensive nature of empirical optimization necessitate systematic implementation of first-principles calculations to elucidate fundamental mechanisms underlying experimental observations and enable rational design of surface/interface modifications. This review examines three advancements in ab initio calculations for interfacial engineering: (1) revealing the mechanism of selective assembly and activation phenomena on surfaces, (2) theoretical predictions of interface engineering strategies, and (3) developing material databases with ionic/van der Waals components. We further address computational challenges while proposing quantum-mechanical methods to design next-gen materials with customized interfacial properties.
期刊介绍:
Computational molecular sciences harness the power of rigorous chemical and physical theories, employing computer-based modeling, specialized hardware, software development, algorithm design, and database management to explore and illuminate every facet of molecular sciences. These interdisciplinary approaches form a bridge between chemistry, biology, and materials sciences, establishing connections with adjacent application-driven fields in both chemistry and biology. WIREs Computational Molecular Science stands as a platform to comprehensively review and spotlight research from these dynamic and interconnected fields.