Saad Aslam, Pyi Phyo Aung, Ahmad Sahban Rafsanjani, Anwar P. P. Abdul Majeed
{"title":"Machine learning applications in energy systems: current trends, challenges, and research directions","authors":"Saad Aslam, Pyi Phyo Aung, Ahmad Sahban Rafsanjani, Anwar P. P. Abdul Majeed","doi":"10.1186/s42162-025-00524-6","DOIUrl":null,"url":null,"abstract":"<div><p>The paradigm shift towards Smart Grids, Smart Buildings, Smart Monitoring, and Operation has driven researchers to propose innovative solutions for designing and maintaining energy systems. Although the integration of Renewable Energy Sources (RES) supports sustainability goals, it also introduces vulnerabilities to unpredictable challenges such as grid stability, energy storage requirements, and infrastructure modernization. Machine Learning (ML) has emerged as a transformative tool to address these challenges, offering opportunities to enhance energy efficiency, and system design in alignment with Sustainable Development Goals (SDGs). The emphasis on these goals necessitates the study of new system designs that prioritize energy efficiency. Building on its proven success, researchers are increasingly adopting ML-driven approaches to accelerate advances in energy systems. This work presents a detailed review of current ML-driven research trends in energy systems, outlines the associated challenges, and provides potential research directions and recommendations. Unlike the existing literature, which focuses primarily on ML applications in the RES domain, this study offers a holistic perspective on ML-driven approaches across various aspects of energy systems, including energy policy and sustainability. It aims to serve as a comprehensive resource, bridging the gap between research advancements and practical implementations in energy systems through ML-driven innovation.</p></div>","PeriodicalId":538,"journal":{"name":"Energy Informatics","volume":"8 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2025-05-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://energyinformatics.springeropen.com/counter/pdf/10.1186/s42162-025-00524-6","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Energy Informatics","FirstCategoryId":"1085","ListUrlMain":"https://link.springer.com/article/10.1186/s42162-025-00524-6","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Energy","Score":null,"Total":0}
引用次数: 0
Abstract
The paradigm shift towards Smart Grids, Smart Buildings, Smart Monitoring, and Operation has driven researchers to propose innovative solutions for designing and maintaining energy systems. Although the integration of Renewable Energy Sources (RES) supports sustainability goals, it also introduces vulnerabilities to unpredictable challenges such as grid stability, energy storage requirements, and infrastructure modernization. Machine Learning (ML) has emerged as a transformative tool to address these challenges, offering opportunities to enhance energy efficiency, and system design in alignment with Sustainable Development Goals (SDGs). The emphasis on these goals necessitates the study of new system designs that prioritize energy efficiency. Building on its proven success, researchers are increasingly adopting ML-driven approaches to accelerate advances in energy systems. This work presents a detailed review of current ML-driven research trends in energy systems, outlines the associated challenges, and provides potential research directions and recommendations. Unlike the existing literature, which focuses primarily on ML applications in the RES domain, this study offers a holistic perspective on ML-driven approaches across various aspects of energy systems, including energy policy and sustainability. It aims to serve as a comprehensive resource, bridging the gap between research advancements and practical implementations in energy systems through ML-driven innovation.