A critical analysis of deployed use cases for quantum key distribution and comparison with post-quantum cryptography

IF 5.8 2区 物理与天体物理 Q1 OPTICS
Nick Aquina, Bruno Cimoli, Soumya Das, Kathrin Hövelmanns, Fiona Johanna Weber, Chigo Okonkwo, Simon Rommel, Boris Škorić, Idelfonso Tafur Monroy, Sebastian Verschoor
{"title":"A critical analysis of deployed use cases for quantum key distribution and comparison with post-quantum cryptography","authors":"Nick Aquina,&nbsp;Bruno Cimoli,&nbsp;Soumya Das,&nbsp;Kathrin Hövelmanns,&nbsp;Fiona Johanna Weber,&nbsp;Chigo Okonkwo,&nbsp;Simon Rommel,&nbsp;Boris Škorić,&nbsp;Idelfonso Tafur Monroy,&nbsp;Sebastian Verschoor","doi":"10.1140/epjqt/s40507-025-00350-5","DOIUrl":null,"url":null,"abstract":"<div><p>Quantum Key Distribution (QKD) is currently being discussed as a technology to safeguard communication in a future where quantum computers compromise traditional public-key cryptosystems. In this paper, we conduct a comprehensive security evaluation of QKD-based solutions, focusing on real-world use cases sourced from academic literature and industry reports. We analyze these use cases, assess their security and identify the possible advantages of deploying QKD-based solutions. We further compare QKD-based solutions with Post-Quantum Cryptography (PQC), the alternative approach to achieving security when quantum computers compromise traditional public-key cryptosystems, evaluating their respective suitability for each scenario. Based on this comparative analysis, we critically discuss and comment on which use cases QKD is suited for, considering factors such as implementation complexity, scalability, and long-term security. Our findings contribute to a better understanding of the role QKD could play in future cryptographic infrastructures and offer guidance to decision-makers considering the deployment of QKD.</p></div>","PeriodicalId":547,"journal":{"name":"EPJ Quantum Technology","volume":"12 1","pages":""},"PeriodicalIF":5.8000,"publicationDate":"2025-05-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://epjquantumtechnology.springeropen.com/counter/pdf/10.1140/epjqt/s40507-025-00350-5","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"EPJ Quantum Technology","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.1140/epjqt/s40507-025-00350-5","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"OPTICS","Score":null,"Total":0}
引用次数: 0

Abstract

Quantum Key Distribution (QKD) is currently being discussed as a technology to safeguard communication in a future where quantum computers compromise traditional public-key cryptosystems. In this paper, we conduct a comprehensive security evaluation of QKD-based solutions, focusing on real-world use cases sourced from academic literature and industry reports. We analyze these use cases, assess their security and identify the possible advantages of deploying QKD-based solutions. We further compare QKD-based solutions with Post-Quantum Cryptography (PQC), the alternative approach to achieving security when quantum computers compromise traditional public-key cryptosystems, evaluating their respective suitability for each scenario. Based on this comparative analysis, we critically discuss and comment on which use cases QKD is suited for, considering factors such as implementation complexity, scalability, and long-term security. Our findings contribute to a better understanding of the role QKD could play in future cryptographic infrastructures and offer guidance to decision-makers considering the deployment of QKD.

对量子密钥分发的部署用例进行了关键分析,并与后量子加密进行了比较
量子密钥分发(QKD)目前正在被讨论,作为未来量子计算机破坏传统公钥密码系统时保护通信的技术。在本文中,我们对基于qkd的解决方案进行了全面的安全评估,重点关注来自学术文献和行业报告的真实用例。我们分析这些用例,评估它们的安全性,并确定部署基于qkd的解决方案的可能优势。我们进一步将基于qkd的解决方案与后量子密码学(PQC)进行了比较,PQC是在量子计算机危及传统公钥密码系统时实现安全的替代方法,评估了它们各自对每种场景的适用性。基于这种比较分析,我们批判性地讨论和评论QKD适合哪些用例,同时考虑实现复杂性、可伸缩性和长期安全性等因素。我们的研究结果有助于更好地理解QKD在未来加密基础设施中可能发挥的作用,并为考虑部署QKD的决策者提供指导。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
EPJ Quantum Technology
EPJ Quantum Technology Physics and Astronomy-Atomic and Molecular Physics, and Optics
CiteScore
7.70
自引率
7.50%
发文量
28
审稿时长
71 days
期刊介绍: Driven by advances in technology and experimental capability, the last decade has seen the emergence of quantum technology: a new praxis for controlling the quantum world. It is now possible to engineer complex, multi-component systems that merge the once distinct fields of quantum optics and condensed matter physics. EPJ Quantum Technology covers theoretical and experimental advances in subjects including but not limited to the following: Quantum measurement, metrology and lithography Quantum complex systems, networks and cellular automata Quantum electromechanical systems Quantum optomechanical systems Quantum machines, engineering and nanorobotics Quantum control theory Quantum information, communication and computation Quantum thermodynamics Quantum metamaterials The effect of Casimir forces on micro- and nano-electromechanical systems Quantum biology Quantum sensing Hybrid quantum systems Quantum simulations.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信