Investigation on the effect of pressure rate on the thickness, microstructure and property of magnesium alloy cylindrical part during warm hydromechanical deep drawing

IF 2.6 3区 材料科学 Q2 ENGINEERING, MANUFACTURING
Gaoshen Cai, Yufeng Pan, Ziang Jing
{"title":"Investigation on the effect of pressure rate on the thickness, microstructure and property of magnesium alloy cylindrical part during warm hydromechanical deep drawing","authors":"Gaoshen Cai,&nbsp;Yufeng Pan,&nbsp;Ziang Jing","doi":"10.1007/s12289-025-01905-8","DOIUrl":null,"url":null,"abstract":"<div><p>Magnesium alloys are regarded as the next-generation lightweight structural materials; however, their formability at room temperature remains limited. Hydromechanical deep drawing is an effective technique to enhance the formability of magnesium alloys, with pressure rate (the pressure increment per unit time) being a critical parameter influencing part formability. In this study, a finite element model of an AZ31B magnesium alloy cylindrical component was established to investigate the effect of pressure rate on wall thickness. Under constant process parameters, variations in wall thickness at different pressure rates were simulated, and the impact on minimum wall thickness, thickness distribution, and uniformity was analyzed. Additionally, a predictive equation for wall thickness uniformity of cylindrical parts was developed. Metallographic analysis and hardness testing were conducted to examine the microstructure and hardness distribution in different deformation regions under varying pressure rates, with a focus on explaining the relationship between hardness distribution and microstructure. This study provides insights into the hydromechanical deep drawing mechanism of magnesium alloys from both micro- and macroscopic perspectives, offering a theoretical basis for optimizing the forming process.</p></div>","PeriodicalId":591,"journal":{"name":"International Journal of Material Forming","volume":"18 2","pages":""},"PeriodicalIF":2.6000,"publicationDate":"2025-05-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Material Forming","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1007/s12289-025-01905-8","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, MANUFACTURING","Score":null,"Total":0}
引用次数: 0

Abstract

Magnesium alloys are regarded as the next-generation lightweight structural materials; however, their formability at room temperature remains limited. Hydromechanical deep drawing is an effective technique to enhance the formability of magnesium alloys, with pressure rate (the pressure increment per unit time) being a critical parameter influencing part formability. In this study, a finite element model of an AZ31B magnesium alloy cylindrical component was established to investigate the effect of pressure rate on wall thickness. Under constant process parameters, variations in wall thickness at different pressure rates were simulated, and the impact on minimum wall thickness, thickness distribution, and uniformity was analyzed. Additionally, a predictive equation for wall thickness uniformity of cylindrical parts was developed. Metallographic analysis and hardness testing were conducted to examine the microstructure and hardness distribution in different deformation regions under varying pressure rates, with a focus on explaining the relationship between hardness distribution and microstructure. This study provides insights into the hydromechanical deep drawing mechanism of magnesium alloys from both micro- and macroscopic perspectives, offering a theoretical basis for optimizing the forming process.

压力速率对镁合金圆柱件热流体机械拉深成形厚度、组织和性能影响的研究
镁合金被认为是下一代轻量化结构材料;然而,它们在室温下的成形性仍然有限。流体机械拉深是提高镁合金成形性能的一种有效技术,压力速率(单位时间内的压力增量)是影响零件成形性能的关键参数。本文建立了AZ31B镁合金圆柱形构件的有限元模型,研究了压力速率对壁厚的影响。在一定的工艺参数下,模拟了不同压力速率下壁厚的变化,分析了对最小壁厚、厚度分布和均匀性的影响。此外,还建立了圆柱件壁厚均匀性的预测方程。通过金相分析和硬度测试,考察了不同压力速率下不同变形区域的显微组织和硬度分布,重点解释了硬度分布与显微组织的关系。本研究从微观和宏观两方面深入了解镁合金流体力学拉深机理,为优化成形工艺提供理论依据。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
International Journal of Material Forming
International Journal of Material Forming ENGINEERING, MANUFACTURING-MATERIALS SCIENCE, MULTIDISCIPLINARY
CiteScore
5.10
自引率
4.20%
发文量
76
审稿时长
>12 weeks
期刊介绍: The Journal publishes and disseminates original research in the field of material forming. The research should constitute major achievements in the understanding, modeling or simulation of material forming processes. In this respect ‘forming’ implies a deliberate deformation of material. The journal establishes a platform of communication between engineers and scientists, covering all forming processes, including sheet forming, bulk forming, powder forming, forming in near-melt conditions (injection moulding, thixoforming, film blowing etc.), micro-forming, hydro-forming, thermo-forming, incremental forming etc. Other manufacturing technologies like machining and cutting can be included if the focus of the work is on plastic deformations. All materials (metals, ceramics, polymers, composites, glass, wood, fibre reinforced materials, materials in food processing, biomaterials, nano-materials, shape memory alloys etc.) and approaches (micro-macro modelling, thermo-mechanical modelling, numerical simulation including new and advanced numerical strategies, experimental analysis, inverse analysis, model identification, optimization, design and control of forming tools and machines, wear and friction, mechanical behavior and formability of materials etc.) are concerned.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信