{"title":"Multi-Expert Adaptive Selection: Task-Balancing for All-in-One Image Restoration","authors":"Xiaoyan Yu;Shen Zhou;Huafeng Li;Liehuang Zhu","doi":"10.1109/TCSVT.2024.3516074","DOIUrl":null,"url":null,"abstract":"The use of a single image restoration framework to achieve multi-task image restoration has garnered significant attention from researchers. However, several practical challenges remain, including meeting the specific and simultaneous demands of different tasks, balancing relationships between tasks, and effectively utilizing task correlations in model design. To address these challenges, this paper explores a multi-expert adaptive selection mechanism. We begin by designing a feature representation method that accounts for both the pixel channel level and the global level, encompassing low-frequency and high-frequency components of the image. Based on this method, we construct a multi-expert selection and ensemble scheme. This scheme adaptively selects the most suitable expert from the expert library according to the content of the input image and the prompts of the current task. It not only meets the individualized needs of different tasks but also achieves balance and optimization across tasks. By sharing experts, our design promotes interconnections between different tasks, thereby enhancing overall performance and resource utilization. Additionally, the multi-expert mechanism effectively eliminates irrelevant experts, reducing interference from them and further improving the effectiveness and accuracy of image restoration. Experimental results demonstrate that our proposed method is both effective and superior to existing approaches, highlighting its potential for practical applications in multi-task image restoration. The source code of the proposed method is available at <uri>https://github.com/zhoushen1/MEASNet</uri>.","PeriodicalId":13082,"journal":{"name":"IEEE Transactions on Circuits and Systems for Video Technology","volume":"35 5","pages":"4619-4634"},"PeriodicalIF":8.3000,"publicationDate":"2024-12-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Circuits and Systems for Video Technology","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/10795246/","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
The use of a single image restoration framework to achieve multi-task image restoration has garnered significant attention from researchers. However, several practical challenges remain, including meeting the specific and simultaneous demands of different tasks, balancing relationships between tasks, and effectively utilizing task correlations in model design. To address these challenges, this paper explores a multi-expert adaptive selection mechanism. We begin by designing a feature representation method that accounts for both the pixel channel level and the global level, encompassing low-frequency and high-frequency components of the image. Based on this method, we construct a multi-expert selection and ensemble scheme. This scheme adaptively selects the most suitable expert from the expert library according to the content of the input image and the prompts of the current task. It not only meets the individualized needs of different tasks but also achieves balance and optimization across tasks. By sharing experts, our design promotes interconnections between different tasks, thereby enhancing overall performance and resource utilization. Additionally, the multi-expert mechanism effectively eliminates irrelevant experts, reducing interference from them and further improving the effectiveness and accuracy of image restoration. Experimental results demonstrate that our proposed method is both effective and superior to existing approaches, highlighting its potential for practical applications in multi-task image restoration. The source code of the proposed method is available at https://github.com/zhoushen1/MEASNet.
期刊介绍:
The IEEE Transactions on Circuits and Systems for Video Technology (TCSVT) is dedicated to covering all aspects of video technologies from a circuits and systems perspective. We encourage submissions of general, theoretical, and application-oriented papers related to image and video acquisition, representation, presentation, and display. Additionally, we welcome contributions in areas such as processing, filtering, and transforms; analysis and synthesis; learning and understanding; compression, transmission, communication, and networking; as well as storage, retrieval, indexing, and search. Furthermore, papers focusing on hardware and software design and implementation are highly valued. Join us in advancing the field of video technology through innovative research and insights.