{"title":"Spline tie-decay temporal networks","authors":"Chanon Thongprayoon , Naoki Masuda","doi":"10.1016/j.jocs.2025.102591","DOIUrl":null,"url":null,"abstract":"<div><div>Increasing amounts of data are available on temporal, or time-varying, networks. There have been various representations of temporal network data each of which has different advantages for downstream tasks such as mathematical analysis, visualizations, agent-based and other dynamical simulations on the temporal network, and discovery of useful structure. The tie-decay network is a representation of temporal networks whose advantages include the capability of generating continuous-time networks from discrete time-stamped contact event data with mathematical tractability and a low computational cost. However, the current framework of tie-decay networks is limited in terms of how each discrete contact event can affect the time-dependent tie strength (which we call the kernel). Here we extend the tie-decay network model in terms of the kernel. Specifically, we use a cubic spline function for modeling short-term behavior of the kernel and an exponential decay function for long-term behavior, and graft them together. This spline version of tie-decay network enables delayed and <span><math><msup><mrow><mi>C</mi></mrow><mrow><mn>1</mn></mrow></msup></math></span>-continuous interaction rates between two nodes while it only marginally increases the computational and memory burden relative to the conventional tie-decay network. We show mathematical properties of the spline tie-decay network and numerically showcase it with three tasks: network embedding, a deterministic opinion dynamics model, and a stochastic epidemic spreading model.</div></div>","PeriodicalId":48907,"journal":{"name":"Journal of Computational Science","volume":"88 ","pages":"Article 102591"},"PeriodicalIF":3.1000,"publicationDate":"2025-04-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Computational Science","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1877750325000687","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0
Abstract
Increasing amounts of data are available on temporal, or time-varying, networks. There have been various representations of temporal network data each of which has different advantages for downstream tasks such as mathematical analysis, visualizations, agent-based and other dynamical simulations on the temporal network, and discovery of useful structure. The tie-decay network is a representation of temporal networks whose advantages include the capability of generating continuous-time networks from discrete time-stamped contact event data with mathematical tractability and a low computational cost. However, the current framework of tie-decay networks is limited in terms of how each discrete contact event can affect the time-dependent tie strength (which we call the kernel). Here we extend the tie-decay network model in terms of the kernel. Specifically, we use a cubic spline function for modeling short-term behavior of the kernel and an exponential decay function for long-term behavior, and graft them together. This spline version of tie-decay network enables delayed and -continuous interaction rates between two nodes while it only marginally increases the computational and memory burden relative to the conventional tie-decay network. We show mathematical properties of the spline tie-decay network and numerically showcase it with three tasks: network embedding, a deterministic opinion dynamics model, and a stochastic epidemic spreading model.
期刊介绍:
Computational Science is a rapidly growing multi- and interdisciplinary field that uses advanced computing and data analysis to understand and solve complex problems. It has reached a level of predictive capability that now firmly complements the traditional pillars of experimentation and theory.
The recent advances in experimental techniques such as detectors, on-line sensor networks and high-resolution imaging techniques, have opened up new windows into physical and biological processes at many levels of detail. The resulting data explosion allows for detailed data driven modeling and simulation.
This new discipline in science combines computational thinking, modern computational methods, devices and collateral technologies to address problems far beyond the scope of traditional numerical methods.
Computational science typically unifies three distinct elements:
• Modeling, Algorithms and Simulations (e.g. numerical and non-numerical, discrete and continuous);
• Software developed to solve science (e.g., biological, physical, and social), engineering, medicine, and humanities problems;
• Computer and information science that develops and optimizes the advanced system hardware, software, networking, and data management components (e.g. problem solving environments).