Integrated metabolomics and gut microbiota analysis to explore the protective effects of Gushudan on postmenopausal osteoporosis rats via gut-bone axis
Qinghua Liang , Hailing Du , Yajing Wang , Ying Lai , Mengxin Ren , Xiuyan Wei , Zhili Xiong
{"title":"Integrated metabolomics and gut microbiota analysis to explore the protective effects of Gushudan on postmenopausal osteoporosis rats via gut-bone axis","authors":"Qinghua Liang , Hailing Du , Yajing Wang , Ying Lai , Mengxin Ren , Xiuyan Wei , Zhili Xiong","doi":"10.1016/j.jpba.2025.116942","DOIUrl":null,"url":null,"abstract":"<div><div>Postmenopausal osteoporosis (PMOP) was caused by significant deviations in gut microbiota and metabolites. Gushudan (GSD), a small traditional Chinese medicine formula, exerted therapeutic effects including kidney-nourishing and bone-strengthening properties. The therapeutic mechanism of GSD in alleviating kidney-yang deficiency syndrome and secondary osteoporosis was systematically investigated through metabolomics and network pharmacology. However, the mechanisms and impact on gut microbiota through which GSD mitigated PMOP remained to be elucidated. In this study, fecal metabolomics was integrated with gut microbiota analysis to comprehensively investigate modification in intestinal flora and metabolic profiles in PMOP rat models from the gut-bone axis framework. Therefore, the GC-MS-based method integrating non-targeted and targeted metabolomics was established to analyze fecal metabolites. The comprehensive analysis of gut microbial communities was performed using 16S rRNA on fecal samples. In the result, 20 potential biomarkers were successfully identified in the non-targeted metabolomics analysis. Subsequently, 12 metabolites related to amino acid metabolism, energy metabolism and bile acid biosynthesis were quantitatively. Then, ten gut microorganisms with significant changes were discovered through 16S rRNA. Furthermore, alterations in fecal metabolites demonstrated a significant correlation with dysbiosis within the gut microorganisms such as <em>[Ruminococcus]_torques_group</em>, <em>Elusimicrobium</em>, <em>Intestinimonas</em> and <em>Papillibacter</em>. GSD effectively modulated abnormal levels of metabolites such as glycine, lactic acid, succinic acid, cholesterol and deoxycholic acid. Specifically, GSD improved the abundance of <em>[Ruminococcus]_torques_group</em>, <em>Elusimicrobium</em>, <em>Intestinimonas</em>. In conclusion, the gut-bone axis was validated as a novel framework, and gut microbiota modulation was further identified as a promising therapeutic target for the prevention of PMOP.</div></div>","PeriodicalId":16685,"journal":{"name":"Journal of pharmaceutical and biomedical analysis","volume":"263 ","pages":"Article 116942"},"PeriodicalIF":3.1000,"publicationDate":"2025-05-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of pharmaceutical and biomedical analysis","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0731708525002833","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Postmenopausal osteoporosis (PMOP) was caused by significant deviations in gut microbiota and metabolites. Gushudan (GSD), a small traditional Chinese medicine formula, exerted therapeutic effects including kidney-nourishing and bone-strengthening properties. The therapeutic mechanism of GSD in alleviating kidney-yang deficiency syndrome and secondary osteoporosis was systematically investigated through metabolomics and network pharmacology. However, the mechanisms and impact on gut microbiota through which GSD mitigated PMOP remained to be elucidated. In this study, fecal metabolomics was integrated with gut microbiota analysis to comprehensively investigate modification in intestinal flora and metabolic profiles in PMOP rat models from the gut-bone axis framework. Therefore, the GC-MS-based method integrating non-targeted and targeted metabolomics was established to analyze fecal metabolites. The comprehensive analysis of gut microbial communities was performed using 16S rRNA on fecal samples. In the result, 20 potential biomarkers were successfully identified in the non-targeted metabolomics analysis. Subsequently, 12 metabolites related to amino acid metabolism, energy metabolism and bile acid biosynthesis were quantitatively. Then, ten gut microorganisms with significant changes were discovered through 16S rRNA. Furthermore, alterations in fecal metabolites demonstrated a significant correlation with dysbiosis within the gut microorganisms such as [Ruminococcus]_torques_group, Elusimicrobium, Intestinimonas and Papillibacter. GSD effectively modulated abnormal levels of metabolites such as glycine, lactic acid, succinic acid, cholesterol and deoxycholic acid. Specifically, GSD improved the abundance of [Ruminococcus]_torques_group, Elusimicrobium, Intestinimonas. In conclusion, the gut-bone axis was validated as a novel framework, and gut microbiota modulation was further identified as a promising therapeutic target for the prevention of PMOP.
期刊介绍:
This journal is an international medium directed towards the needs of academic, clinical, government and industrial analysis by publishing original research reports and critical reviews on pharmaceutical and biomedical analysis. It covers the interdisciplinary aspects of analysis in the pharmaceutical, biomedical and clinical sciences, including developments in analytical methodology, instrumentation, computation and interpretation. Submissions on novel applications focusing on drug purity and stability studies, pharmacokinetics, therapeutic monitoring, metabolic profiling; drug-related aspects of analytical biochemistry and forensic toxicology; quality assurance in the pharmaceutical industry are also welcome.
Studies from areas of well established and poorly selective methods, such as UV-VIS spectrophotometry (including derivative and multi-wavelength measurements), basic electroanalytical (potentiometric, polarographic and voltammetric) methods, fluorimetry, flow-injection analysis, etc. are accepted for publication in exceptional cases only, if a unique and substantial advantage over presently known systems is demonstrated. The same applies to the assay of simple drug formulations by any kind of methods and the determination of drugs in biological samples based merely on spiked samples. Drug purity/stability studies should contain information on the structure elucidation of the impurities/degradants.