Atomic-scale insights into rare earth Oxo-Cation stabilization in HY zeolites: A periotic DFT study

IF 3.1 3区 材料科学 Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY
Minghui Shen , Huimin Guan , Qiang Li , Li Zhang , Shengyu Se , Xiaofeng Du , Yucai Qin , Lijuan Song
{"title":"Atomic-scale insights into rare earth Oxo-Cation stabilization in HY zeolites: A periotic DFT study","authors":"Minghui Shen ,&nbsp;Huimin Guan ,&nbsp;Qiang Li ,&nbsp;Li Zhang ,&nbsp;Shengyu Se ,&nbsp;Xiaofeng Du ,&nbsp;Yucai Qin ,&nbsp;Lijuan Song","doi":"10.1016/j.commatsci.2025.113955","DOIUrl":null,"url":null,"abstract":"<div><div>This study systematically investigates the stabilization mechanisms and structural-electronic modulation of rare earth cations (La<sup>3+</sup>, Ce<sup>3+</sup>, Y<sup>3+</sup>) at distinct crystallographic sites (SI’, SII, SIII) in HY zeolites using density functional theory (DFT) calculations. It is revealed that the stability of rare earth oxo-cations (REO<sup>+</sup>) strongly depends on their occupied positions and ionic radii. At the SI’ sites, LaO<sup>+</sup>, with a larger ionic radius (1.16 Å), exhibits the lowest formation energy (ΔE &lt; 0) and preferentially stabilizes within the 6-membered rings (6-MR) of sodalite cages through strong interactions with framework oxygen atoms, while Y<sup>3+</sup> (0.90 Å) induces localized lattice distortions and migrates to SII/SIII sites due to spatial constraints. Structural analyses demonstrate that REO<sup>+</sup> incorporation synergistically regulates zeolite stability via geometric effects (e.g., 6-MR contraction and supercage expansion) and electronic effects (weakened Al-O bond polarization and enhanced RE-O charge transfer). Specifically, La<sup>3+</sup> strengthens covalent bonding through d-orbital-mediated directional charge transfer, whereas Ce<sup>3+</sup> induces asymmetric charge redistribution via 4f-orbital participation, which is also proofed by the COHP and DOS analysis. This work elucidates the atomic-scale site selectivity and stabilization mechanisms of RE cations in zeolites, providing theoretical insights for designing highly stable RE-modified HY zeolite catalysts with tailored acidity. These findings hold significant implications for industrial applications such as petroleum cracking and environmental catalysis.</div></div>","PeriodicalId":10650,"journal":{"name":"Computational Materials Science","volume":"256 ","pages":"Article 113955"},"PeriodicalIF":3.1000,"publicationDate":"2025-05-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computational Materials Science","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0927025625002988","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

This study systematically investigates the stabilization mechanisms and structural-electronic modulation of rare earth cations (La3+, Ce3+, Y3+) at distinct crystallographic sites (SI’, SII, SIII) in HY zeolites using density functional theory (DFT) calculations. It is revealed that the stability of rare earth oxo-cations (REO+) strongly depends on their occupied positions and ionic radii. At the SI’ sites, LaO+, with a larger ionic radius (1.16 Å), exhibits the lowest formation energy (ΔE < 0) and preferentially stabilizes within the 6-membered rings (6-MR) of sodalite cages through strong interactions with framework oxygen atoms, while Y3+ (0.90 Å) induces localized lattice distortions and migrates to SII/SIII sites due to spatial constraints. Structural analyses demonstrate that REO+ incorporation synergistically regulates zeolite stability via geometric effects (e.g., 6-MR contraction and supercage expansion) and electronic effects (weakened Al-O bond polarization and enhanced RE-O charge transfer). Specifically, La3+ strengthens covalent bonding through d-orbital-mediated directional charge transfer, whereas Ce3+ induces asymmetric charge redistribution via 4f-orbital participation, which is also proofed by the COHP and DOS analysis. This work elucidates the atomic-scale site selectivity and stabilization mechanisms of RE cations in zeolites, providing theoretical insights for designing highly stable RE-modified HY zeolite catalysts with tailored acidity. These findings hold significant implications for industrial applications such as petroleum cracking and environmental catalysis.

Abstract Image

HY沸石中稀土氧阳离子稳定的原子尺度研究:周期DFT研究
本研究利用密度泛函理论(DFT)计算系统地研究了稀土阳离子(La3+, Ce3+, Y3+)在HY沸石中不同晶体位置(SI′,SII, SIII)的稳定机制和结构电子调制。结果表明,稀土氧化阳离子(REO+)的稳定性与它们的占据位置和离子半径密切相关。在SI位点,离子半径较大(1.16 Å)的LaO+表现出最低的形成能(ΔE <;0),并通过与框架氧原子的强相互作用优先稳定在钠石笼的6元环(6-MR)内,而Y3+ (0.90 Å)由于空间限制导致局部晶格畸变并迁移到SII/SIII位点。结构分析表明,REO+掺入通过几何效应(如6-MR收缩和超笼膨胀)和电子效应(减弱Al-O键极化和增强RE-O电荷转移)协同调节沸石的稳定性。具体来说,La3+通过d轨道介导的定向电荷转移加强共价键,而Ce3+通过4f轨道参与诱导不对称电荷再分配,这也被COHP和DOS分析所证实。本研究阐明了稀土离子在沸石中的原子尺度选择性和稳定机理,为设计高稳定性、高酸度的稀土改性HY沸石催化剂提供了理论依据。这些发现对石油裂解和环境催化等工业应用具有重要意义。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Computational Materials Science
Computational Materials Science 工程技术-材料科学:综合
CiteScore
6.50
自引率
6.10%
发文量
665
审稿时长
26 days
期刊介绍: The goal of Computational Materials Science is to report on results that provide new or unique insights into, or significantly expand our understanding of, the properties of materials or phenomena associated with their design, synthesis, processing, characterization, and utilization. To be relevant to the journal, the results should be applied or applicable to specific material systems that are discussed within the submission.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信