Jaeheon Seol , Jaehoon Kim , Sung Min Moon , Duwon Jung , Changyu Kang , Ki Wung Chung , Young-Suk Jung , Young-Hwa Chung , Yunjin Jung , Hae Young Chung , Seung-Cheol Chang , Jaewon Lee
{"title":"Preventive effect of a garlic compound on astrocyte-mediated neuroinflammation in Parkinson's disease","authors":"Jaeheon Seol , Jaehoon Kim , Sung Min Moon , Duwon Jung , Changyu Kang , Ki Wung Chung , Young-Suk Jung , Young-Hwa Chung , Yunjin Jung , Hae Young Chung , Seung-Cheol Chang , Jaewon Lee","doi":"10.1016/j.neuropharm.2025.110494","DOIUrl":null,"url":null,"abstract":"<div><div>Parkinson's disease (PD) is a progressive neurodegenerative disorder characterized by dopaminergic neuron loss and resultant severe motor dysfunction. While current treatments primarily focus on maintaining dopamine levels, effective targeting of neuroinflammation, an important driver of disease progression, remains an unmet need. This study investigates the neuroprotective potential of BMDA (BMDA(N-benzyl-N-methyldecan-1-amine)), a natural compound derived from garlic with strong anti-inflammatory properties, using an MPTP (1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine)-induced mouse model of PD. Behavioral assessments, immunohistochemistry, and dopamine analysis showed that BMDA effectively reduced neuroinflammation and preserved dopaminergic neurons. <em>In vitro</em> studies showed that BMDA significantly suppressed inflammatory markers and reduced astrocyte activation in MPP<sup>+</sup>-induced primary cultured astrocytes, and real-time PCR confirmed that BMDA attenuated proinflammatory cytokines and chemokines. Further mechanistic studies showed that BMDA inhibited the p-p65 and p-ERK signaling pathways, which underlie astrocyte-mediated neuroinflammation. These findings suggest that BMDA should be considered a therapeutic candidate for PD that targets neuroinflammation.</div></div>","PeriodicalId":19139,"journal":{"name":"Neuropharmacology","volume":"275 ","pages":"Article 110494"},"PeriodicalIF":4.6000,"publicationDate":"2025-05-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neuropharmacology","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S002839082500200X","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Parkinson's disease (PD) is a progressive neurodegenerative disorder characterized by dopaminergic neuron loss and resultant severe motor dysfunction. While current treatments primarily focus on maintaining dopamine levels, effective targeting of neuroinflammation, an important driver of disease progression, remains an unmet need. This study investigates the neuroprotective potential of BMDA (BMDA(N-benzyl-N-methyldecan-1-amine)), a natural compound derived from garlic with strong anti-inflammatory properties, using an MPTP (1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine)-induced mouse model of PD. Behavioral assessments, immunohistochemistry, and dopamine analysis showed that BMDA effectively reduced neuroinflammation and preserved dopaminergic neurons. In vitro studies showed that BMDA significantly suppressed inflammatory markers and reduced astrocyte activation in MPP+-induced primary cultured astrocytes, and real-time PCR confirmed that BMDA attenuated proinflammatory cytokines and chemokines. Further mechanistic studies showed that BMDA inhibited the p-p65 and p-ERK signaling pathways, which underlie astrocyte-mediated neuroinflammation. These findings suggest that BMDA should be considered a therapeutic candidate for PD that targets neuroinflammation.
期刊介绍:
Neuropharmacology publishes high quality, original research and review articles within the discipline of neuroscience, especially articles with a neuropharmacological component. However, papers within any area of neuroscience will be considered. The journal does not usually accept clinical research, although preclinical neuropharmacological studies in humans may be considered. The journal only considers submissions in which the chemical structures and compositions of experimental agents are readily available in the literature or disclosed by the authors in the submitted manuscript. Only in exceptional circumstances will natural products be considered, and then only if the preparation is well defined by scientific means. Neuropharmacology publishes articles of any length (original research and reviews).