Bai-lin Chen , Wei-ming Zhang , Xiao-wan Dong , Jia-yi Liu , Yan-ping Bai
{"title":"Quercetin induces keratinocytes apoptosis via triple inhibition of Notch, PI3K/AKT signaling and Glut1 in the treatment of psoriasis","authors":"Bai-lin Chen , Wei-ming Zhang , Xiao-wan Dong , Jia-yi Liu , Yan-ping Bai","doi":"10.1016/j.bbadis.2025.167879","DOIUrl":null,"url":null,"abstract":"<div><h3>Background</h3><div>Psoriasis is an immune-mediated inflammatory skin disorder marked by excessive keratinocyte proliferation and inflammatory cell infiltration. Quercetin has shown a range of biological activities, highlighting its potential as a therapeutic agent for psoriasis.</div></div><div><h3>Purpose</h3><div>This study aims to explore the mechanisms by which quercetin treats psoriasis.</div></div><div><h3>Methods</h3><div>An Imiquimod-induced psoriasis mouse model and a TNF-α-induced keratinocyte proliferation model were utilized, supplemented with quercetin and DAPT. The expression of K10, K14, Notch1, NICD, AKT and Glut1 in psoriatic lesions and normal skin was assessed. Techniques employed included hematoxylin-eosin staining, immunohistochemical staining, western blotting, quantitative polymerase chain reaction, cell counting kit-8 assay, flow cytometry, and enzyme-linked immunosorbent assay.</div></div><div><h3>Results</h3><div>Notch1, AKT, and Glut1 were highly expressed in psoriasis. Quercetin induced keratinocyte apoptosis and inhibited the Notch signaling pathway, as well as the expression of AKT and Glut1. Inhibition of Notch signaling led to keratinocyte apoptosis and downregulation of the AKT and Glut1 expression. The results of network pharmacology and molecular docking are consistent with this.</div></div><div><h3>Conclusion</h3><div>This study provides the first evidence that quercetin induces keratinocyte apoptosis and promotes keratinocyte differentiation to treat psoriasis through the triple inhibition of the Notch and PI3K/AKT signaling pathways, as well as Glut1. The downregulation of the PI3K/AKT pathway and Glut1 is achieved partially via Notch inhibition. These findings suggest that quercetin could be a novel agent for improving psoriasis treatment, especially in patients exhibiting high expression of Notch1, AKT, and Glut1 in their skin lesions.</div></div>","PeriodicalId":8821,"journal":{"name":"Biochimica et biophysica acta. Molecular basis of disease","volume":"1871 6","pages":"Article 167879"},"PeriodicalIF":4.2000,"publicationDate":"2025-04-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biochimica et biophysica acta. Molecular basis of disease","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0925443925002273","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Background
Psoriasis is an immune-mediated inflammatory skin disorder marked by excessive keratinocyte proliferation and inflammatory cell infiltration. Quercetin has shown a range of biological activities, highlighting its potential as a therapeutic agent for psoriasis.
Purpose
This study aims to explore the mechanisms by which quercetin treats psoriasis.
Methods
An Imiquimod-induced psoriasis mouse model and a TNF-α-induced keratinocyte proliferation model were utilized, supplemented with quercetin and DAPT. The expression of K10, K14, Notch1, NICD, AKT and Glut1 in psoriatic lesions and normal skin was assessed. Techniques employed included hematoxylin-eosin staining, immunohistochemical staining, western blotting, quantitative polymerase chain reaction, cell counting kit-8 assay, flow cytometry, and enzyme-linked immunosorbent assay.
Results
Notch1, AKT, and Glut1 were highly expressed in psoriasis. Quercetin induced keratinocyte apoptosis and inhibited the Notch signaling pathway, as well as the expression of AKT and Glut1. Inhibition of Notch signaling led to keratinocyte apoptosis and downregulation of the AKT and Glut1 expression. The results of network pharmacology and molecular docking are consistent with this.
Conclusion
This study provides the first evidence that quercetin induces keratinocyte apoptosis and promotes keratinocyte differentiation to treat psoriasis through the triple inhibition of the Notch and PI3K/AKT signaling pathways, as well as Glut1. The downregulation of the PI3K/AKT pathway and Glut1 is achieved partially via Notch inhibition. These findings suggest that quercetin could be a novel agent for improving psoriasis treatment, especially in patients exhibiting high expression of Notch1, AKT, and Glut1 in their skin lesions.
期刊介绍:
BBA Molecular Basis of Disease addresses the biochemistry and molecular genetics of disease processes and models of human disease. This journal covers aspects of aging, cancer, metabolic-, neurological-, and immunological-based disease. Manuscripts focused on using animal models to elucidate biochemical and mechanistic insight in each of these conditions, are particularly encouraged. Manuscripts should emphasize the underlying mechanisms of disease pathways and provide novel contributions to the understanding and/or treatment of these disorders. Highly descriptive and method development submissions may be declined without full review. The submission of uninvited reviews to BBA - Molecular Basis of Disease is strongly discouraged, and any such uninvited review should be accompanied by a coverletter outlining the compelling reasons why the review should be considered.