Invariant tori for the fractional nonlinear Schrödinger equation with nonlinearity periodically depending on spatial variable

IF 2.5 2区 数学 Q1 MATHEMATICS
Jieyu Liu, Jing Zhang
{"title":"Invariant tori for the fractional nonlinear Schrödinger equation with nonlinearity periodically depending on spatial variable","authors":"Jieyu Liu, Jing Zhang","doi":"10.1007/s13540-025-00409-1","DOIUrl":null,"url":null,"abstract":"<p>In this paper, we focus on a type of fractional nonlinear Schrödinger equation with odd periodic boundary conditions, where the nonlinearity periodically depending on spatial variable <i>x</i>. By an abstract KAM (Kolmogorov-Arnold-Moser) theorem for infinite dimensional reversible systems with unbounded perturbation, we obtain that there exists a lot of smooth quasi-periodic solutions with small amplitude for fractional nonlinear Schrödinger equations.</p>","PeriodicalId":48928,"journal":{"name":"Fractional Calculus and Applied Analysis","volume":"35 1","pages":""},"PeriodicalIF":2.5000,"publicationDate":"2025-05-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fractional Calculus and Applied Analysis","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s13540-025-00409-1","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, we focus on a type of fractional nonlinear Schrödinger equation with odd periodic boundary conditions, where the nonlinearity periodically depending on spatial variable x. By an abstract KAM (Kolmogorov-Arnold-Moser) theorem for infinite dimensional reversible systems with unbounded perturbation, we obtain that there exists a lot of smooth quasi-periodic solutions with small amplitude for fractional nonlinear Schrödinger equations.

具有周期性依赖于空间变量非线性的分数阶非线性Schrödinger方程的不变环面
本文研究一类具有奇周期边界条件的分数阶非线性Schrödinger方程,其非线性周期依赖于空间变量x。利用无界扰动下无限维可逆系统的KAM (Kolmogorov-Arnold-Moser)抽象定理,得到了分数阶非线性Schrödinger方程存在许多小振幅的光滑拟周期解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Fractional Calculus and Applied Analysis
Fractional Calculus and Applied Analysis MATHEMATICS, APPLIED-MATHEMATICS, INTERDISCIPLINARY APPLICATIONS
CiteScore
4.70
自引率
16.70%
发文量
101
期刊介绍: Fractional Calculus and Applied Analysis (FCAA, abbreviated in the World databases as Fract. Calc. Appl. Anal. or FRACT CALC APPL ANAL) is a specialized international journal for theory and applications of an important branch of Mathematical Analysis (Calculus) where differentiations and integrations can be of arbitrary non-integer order. The high standards of its contents are guaranteed by the prominent members of Editorial Board and the expertise of invited external reviewers, and proven by the recently achieved high values of impact factor (JIF) and impact rang (SJR), launching the journal to top places of the ranking lists of Thomson Reuters and Scopus.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信