{"title":"Invariant tori for the fractional nonlinear Schrödinger equation with nonlinearity periodically depending on spatial variable","authors":"Jieyu Liu, Jing Zhang","doi":"10.1007/s13540-025-00409-1","DOIUrl":null,"url":null,"abstract":"<p>In this paper, we focus on a type of fractional nonlinear Schrödinger equation with odd periodic boundary conditions, where the nonlinearity periodically depending on spatial variable <i>x</i>. By an abstract KAM (Kolmogorov-Arnold-Moser) theorem for infinite dimensional reversible systems with unbounded perturbation, we obtain that there exists a lot of smooth quasi-periodic solutions with small amplitude for fractional nonlinear Schrödinger equations.</p>","PeriodicalId":48928,"journal":{"name":"Fractional Calculus and Applied Analysis","volume":"35 1","pages":""},"PeriodicalIF":2.5000,"publicationDate":"2025-05-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fractional Calculus and Applied Analysis","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s13540-025-00409-1","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
Abstract
In this paper, we focus on a type of fractional nonlinear Schrödinger equation with odd periodic boundary conditions, where the nonlinearity periodically depending on spatial variable x. By an abstract KAM (Kolmogorov-Arnold-Moser) theorem for infinite dimensional reversible systems with unbounded perturbation, we obtain that there exists a lot of smooth quasi-periodic solutions with small amplitude for fractional nonlinear Schrödinger equations.
期刊介绍:
Fractional Calculus and Applied Analysis (FCAA, abbreviated in the World databases as Fract. Calc. Appl. Anal. or FRACT CALC APPL ANAL) is a specialized international journal for theory and applications of an important branch of Mathematical Analysis (Calculus) where differentiations and integrations can be of arbitrary non-integer order. The high standards of its contents are guaranteed by the prominent members of Editorial Board and the expertise of invited external reviewers, and proven by the recently achieved high values of impact factor (JIF) and impact rang (SJR), launching the journal to top places of the ranking lists of Thomson Reuters and Scopus.