Mixed local and nonlocal eigenvalue problems in the exterior domain

IF 2.5 2区 数学 Q1 MATHEMATICS
R. Lakshmi, Sekhar Ghosh
{"title":"Mixed local and nonlocal eigenvalue problems in the exterior domain","authors":"R. Lakshmi, Sekhar Ghosh","doi":"10.1007/s13540-025-00416-2","DOIUrl":null,"url":null,"abstract":"<p>This paper aims to study the eigenvalue problems of a mixed local and nonlocal operator in the exterior of a nonempty, bounded, simply connected domain <span>\\(\\varOmega \\subset {\\mathbb {R}}^N\\)</span> with Lipschitz boundary <span>\\(\\partial \\varOmega \\ne \\emptyset \\)</span>. By employing the variational methods combined with the <i>Ljusternik-Schnirelmann principle</i>, we prove the existence of a non-decreasing sequence of eigenvalues. In particular, we prove the principal eigenvalue is simple and isolated. We establish the positivity of the first eigenfunction by obtaining a strong maximum principle. The results obtained here are new even for the case <span>\\(p=2\\)</span>.</p>","PeriodicalId":48928,"journal":{"name":"Fractional Calculus and Applied Analysis","volume":"282 1","pages":""},"PeriodicalIF":2.5000,"publicationDate":"2025-05-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fractional Calculus and Applied Analysis","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s13540-025-00416-2","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

This paper aims to study the eigenvalue problems of a mixed local and nonlocal operator in the exterior of a nonempty, bounded, simply connected domain \(\varOmega \subset {\mathbb {R}}^N\) with Lipschitz boundary \(\partial \varOmega \ne \emptyset \). By employing the variational methods combined with the Ljusternik-Schnirelmann principle, we prove the existence of a non-decreasing sequence of eigenvalues. In particular, we prove the principal eigenvalue is simple and isolated. We establish the positivity of the first eigenfunction by obtaining a strong maximum principle. The results obtained here are new even for the case \(p=2\).

外域的混合局部和非局部特征值问题
研究具有Lipschitz边界\(\partial \varOmega \ne \emptyset \)的非空有界单连通域\(\varOmega \subset {\mathbb {R}}^N\)外的混合局部算子和非局部算子的特征值问题。利用变分方法结合Ljusternik-Schnirelmann原理,证明了特征值非递减序列的存在性。特别地,我们证明了主特征值是简单且孤立的。通过得到一个强极大值原理,建立了第一特征函数的正性。这里得到的结果是新的情况下\(p=2\)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Fractional Calculus and Applied Analysis
Fractional Calculus and Applied Analysis MATHEMATICS, APPLIED-MATHEMATICS, INTERDISCIPLINARY APPLICATIONS
CiteScore
4.70
自引率
16.70%
发文量
101
期刊介绍: Fractional Calculus and Applied Analysis (FCAA, abbreviated in the World databases as Fract. Calc. Appl. Anal. or FRACT CALC APPL ANAL) is a specialized international journal for theory and applications of an important branch of Mathematical Analysis (Calculus) where differentiations and integrations can be of arbitrary non-integer order. The high standards of its contents are guaranteed by the prominent members of Editorial Board and the expertise of invited external reviewers, and proven by the recently achieved high values of impact factor (JIF) and impact rang (SJR), launching the journal to top places of the ranking lists of Thomson Reuters and Scopus.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信